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Problem definition: Novel life-improving products such as solar lanterns and energy-efficient cookstoves

address essential needs of consumers in the Base of the Pyramid (BOP). However, their profitable distri-

bution is often difficult since BOP customers are risk-averse, their ability to pay (ATP) is lower than their

willingness to pay (WTP), and they face uncertainty regarding these products’ value.

Academic/Practical Relevance: We examine two practical strategies from distributors in the BOP: (1)

improving the product’s affordability through a discount, and (2) increasing awareness of the product’s value.

Our results identify BOP-specific operational trade-offs in implementing these strategies. We also propose

strategies to manage these trade-offs that can increase consumer surplus in the BOP.

Methodology: We introduce a supply chain model for the BOP and analyze the distributor’s pricing prob-

lem with refunds, as well as the distributor’s optimal budget allocation between strategies (1) and (2).

Results: We find that, in the BOP, the distributor’s profit-maximizing budget allocation often yields the

lowest consumer surplus. This misalignment between profits and consumer surplus disappears if customers’

ATP is high. Moreover, the misalignment can be resolved if the distributor offers free product returns and

commits to a maximum retail price. We confirm the robustness of our results through numerical simulations.

Implications: Best operations strategy practices in the BOP can differ significantly from developed markets.

Furthermore, BOP customers’ limited ATP and high risk-aversion generate a BOP-specific misalignment

between profits and consumer surplus. Operational commitments such as free returns reduce this misalign-

ment and can serve as a signal to investors of a social enterprise’s focus on consumer surplus.

Key words : Social entrepreneurship, base of the pyramid, sustainability, supply chain management.

1. Introduction

Since the early 2000s, there has been an increasing academic and corporate interest in the creation

and distribution of innovative life-improving durable goods that address the unmet needs of Base of

the Pyramid (BOP) customers, i.e. the 800 million people that earn less than $2 a day in purchasing

power parity (PPP) (World Bank 2016). Examples of life-improving durable goods are affordable

solar lanterns, non-electric water purifiers, and smoke-reducing cooking stoves (for a sample of

these technologies see Essmart 2020). The profitable distribution of these is the goal of hundreds
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of social enterprises1 and billions of dollars of investment2. However, businesses have struggled to

create and implement profitable BOP-specific distribution strategies (Simanis 2012).

Although the need for research on BOP-specific distribution strategies has been widely discussed

in the management literature over the last few decades (see Prahalad 2006), there are few operations

management papers that model and examine BOP supply chains. To address this gap, we model

and analyze the operations strategy of a BOP distributor that allocates an investment budget to

profitably distribute a new life-improving durable good. Consistent with the goal of most social

enterprises, the distributor maximizes a mix of its profits and consumer surplus. We consider a

model where a distributor sells a product to a profit-maximizing retailer that, in turn, sells to BOP

customers, modeling the main components of most BOP markets (Bellman et al. 2018).

BOP customers’ ability to pay (ATP) for the life-improving good is often lower than their will-

ingness to pay (WTP). Customers with ATP lower than their WTP is a context-defining feature

of the BOP (Banerjee et al. 2012) and is a key feature of our model. Furthermore, we model BOP

customers as being risk averse. The connection between risk aversion and poverty is well estab-

lished in the literature (Haushofer and Fehr 2014). In practice, BOP customers are frequently not

informed of the benefits that a new life-improving product might provide. As a result, customers

might not buy the product due to uncertainty about the product’s value and fear of regretting

their purchase. Thus, we assume customers have two possible informational states: uninformed,

where a customer has a high degree of uncertainty about the product’s value, and informed, where

the customer is aware of the product’s value (Shugan and Xie 2000).

Recent field experiments suggest that allowing for product returns can be an effective tool

for promoting product adoption in developing countries, see Dupas (2014b) and Levine et al.

(2018). In practice, although a few BOP-focused organizations allow customers to return products,3

product returns have been an underutilized option in the BOP. This is surprising, considering that

many life-improving products are experience goods where customers have difficulty appraising the

product’s benefits before purchase. Hence, our model assumes that the retailer, incentivized by the

distributor, can offer customers the option to return a product for a refund.

We use our model to study two decision-making problems. The first is the Pricing Problem

where the distributor chooses the product’s wholesale price and the refund it gives the retailer for

1 Social enterprises are organizations whose objective combines social and economic value creation. This mixed objec-
tive differentiates social enterprises from both for-profit businesses and from charities (Miller et al. 2012).

2 The Global Investment Impact Network estimates that the impact investment market surpassed $500 billion in
2019. See https://thegiin.org/research/publication/impinv-survey-2019

3 Companies such as Burro, a solar product distributor in Ghana, EcoZoom, a cookstove manufacturer in Kenya, and
Pollinate Energy, a distributor in India, are a few examples of social enterprises that offer customers the option to
return products after purchase.



Calmon et al.: Operational Strategies for Distributing Durable Goods in the Base of the Pyramid
Article submitted to Manufacturing & Service Operations Management; 3

returned products. The retailer, in turn, decides the customer price and the refund (if any) it offers

to customers that regret their purchase and choose to return the product.

The second problem we examine is the distributor’s Allocation Problem where the distributor,

based on the prices and refunds set in the Pricing Problem, allocates an investment budget to

increase profits and consumer welfare. We assume the distributor allocates the budget between

two common types of investments:

1) Invest in improving product affordability through discount coupons or vouchers. Many of the

life-improving technologies are well-established, e.g. induction cooktops, water purifiers, and solar

lamps. However, these technologies are rarely offered at a price point that BOP customers can

afford. With the goal of managing this affordability issue, many BOP organizations address cus-

tomers’ low ATP with discount coupons, subsidies, or financing options.

2) Invest in customer education to increase awareness of the product’s value. Some benefits of

innovative durable goods are not immediately understood by customers.4 To address information

gaps, many social enterprises invest in educational campaigns to increase the number of BOP

customers that are informed of a life-improving product’s existence and benefits.5

We analyze (i) how the BOP distributor should allocate its investment budget between improv-

ing affordability and customer education (1 and 2 above), (ii) how the the distributor’s optimal

investment strategy changes depending on consumers’ ATP and risk aversion, and (iii) the inter-

play between the distributor’s optimal investment strategy and consumer surplus. We first analyze

a setting where all customers have the same ATP. We then leverage this analysis to examine the

case where customers have heterogeneous ATP.

We find that, in equilibrium, investments in affordability always improve the distributor’s objec-

tive. However, investments in consumer education might worsen the distributor’s objective if cus-

tomers have low ATP and low to moderate risk aversion. Thus, the value of information (Shulman

et al. 2009) can be negative in BOP contexts and depends on customer ATP and risk aversion.

Moreover, we characterize the optimal allocation and pricing strategies as a function of cus-

tomers’ ATP and risk aversion level. We prove that if customers’ ATP is low and risk aversion

is high (which is typical of a BOP context), then the distributor’s profit-maximizing allocation

is to increase product affordability, not allow product returns, and skim the market by target-

ing customers with high ATP. This pricing and allocation strategy induces the lowest average

4 For example, smoke-reducing, fuel-efficient, clean cooking stoves could reduce the 4.3 million annual deaths that are
linked to households cooking over coal, wood, and biomass stoves (World Health Organization 2016). However, BOP
customers are usually uninformed of the negative long-term health repercussions associated with using inefficient
stoves, or of the existence of cleaner cooking solutions. As a result, potential customers may be unwilling to pay for
unfamiliar products that may not meet their immediate perceived needs (Global Alliance for Clean Cookstoves 2016).

5 Besides Essmart, social enterprises such as Burro (BOP distributor in Ghana) and Bidhaa Sasa (BOP distributor
in Kenya) rely on teams of sales executives to perform product demonstrations and promote their products
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consumer surplus. Conversely, if customers’ ATP is high (typical of a non-BOP context), the profit-

maximizing allocation strategy is to increase customer education, accept product returns, and

price the product so that all customers purchase. This pricing and allocation strategy induces the

highest average consumer surplus. Hence, our analysis illustrates a tension between profits and

consumer surplus that is BOP-specific. This result has practical implications: profit-maximizing

operations strategies might have adverse implications on consumer surplus when implemented in

a BOP context. Finally, we show that the distributor can mitigate this tension by committing to

offer free returns to customers and by setting a maximum retail price.

Our results shed light on the trade-offs and challenges that emerge when designing an organi-

zation’s operations strategy in the BOP. They provide theoretical support for novel distribution

strategies and operational commitments that are being implemented by social enterprises aiming

at profitably distributing life-improving products and improving consumer welfare in this context.

Several of our modeling assumptions are drawn from the experience of Essmart, an Indian social

enterprise that is the main motivating case study for this paper. Essmart has several distribution

centers that serve a network of over one thousand small retail shops in southern India. See Appendix

A for a discussion of Essmart’s operations strategy.

The rest of the paper is structured as follows. In Section 2 we present a literature review. In

Section 3 we introduce our model. Section 4 examines the setting all where customers have the

same ATP, while Section 5 adresses customers with heterogeneous ATP. In Section 6, we consider

a continuous model and examine the robustness of our results. Finally, Section 7 concludes.

2. Literature review

Our results contribute to the literature on social entrepreneurship, product returns, sustainable

operations, and the intersection of marketing and operations management. To the best of our

knowledge, this is the first study of an equilibrium model that describes the challenges BOP

distributors face when attempting to profitably reach consumers with low ATP and risk aversion.

We position our paper with respect to this literature next.

2.1. Social entrepreneurship and development

Mair and Marti (2006) describe social entrepreneurship as “a process involving the innovative use

and combination of resources to pursue opportunities to catalyze social change and/or address social

needs.” Social entrepreneurship emerges in contexts where goods and services are not adequately

provided by public agencies or private markets (Dees 1994) and where market and government

failures are perceived (McMullen 2011). Through our model, we can address the particular problems

confronted by social enterprises operating in the BOP.
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Recent BOP field experiments motivate the inclusion of product returns in our model. Dupas

(2014b) finds through a field experiment in Kenya that short-term subsidies for bednets can boost

long-term-adoptions because consumers, by trying out the bednet, learn its value. Dupas (2014b)

also speculates that “free trials” could be an effective tool for promoting product adoption in the

BOP. Similarly, Levine et al. (2018) observed in Uganda that giving customers the right to return a

cookstove dramatically increased their adoption. Our results provide a game-theoretic foundation

for these observations.

2.2. Socially responsible supply chains

Our paper is inscribed within the recent research trend in operations management that studies

socially and environmentally responsible value chain innovations; see Lee and Tang (2018) for a

motivation and literature review. Sodhi and Tang (2017) challenge the supply chain community to

develop frameworks for supply chains that seek to have social impact and be financially sustainable.

Given the BOP context we consider, our model is one answer to this challenge.

Recently, Uppari et al. (2017) analyze strategies for off-grid energy business models that rely

on rechargeable lightbulbs in low-income markets. Similar to our paper, they assume that BOP

consumers face financial distress. Zhang et al. (2017) and Gui et al. (2018) consider replenishment

strategies that can help retailers in low-income markets manage costs. Since Essmart, who motivates

this paper, uses a “deliver-to-order” replenishment strategy to retailers, we focus instead on the

trade-off between consumer education and product discounts, modulated by product returns.

A popular research stream is the study of practical mechanisms to incentivize suppliers to comply

with social and environmental standards, e.g. Plambeck and Taylor (2015), Chen and Lee (2016),

and Huang et al. (2017). Our paper relates to this prior work in that we also characterize the

equilibrium behavior of a three-tier supply chain, and quantify the incremental value of different

strategies. However, the focus of this literature is usually on a buyer trying to incentivize a supplier

that is difficult to monitor. In contrast, we focus on a distributor trying to incentivize a local

retailer to carry life-improving products in a low-income market with risk-averse BOP consumers.

A paper related to ours in this area is Taylor and Xiao (2019). They compare distributing socially-

desirable products through non-commercial and commercial channels, where the latter includes a

for-profit intermediary, in a model that incorporates consumer awareness. Taylor and Xiao (2019)

study the optimal subsidy by an international donor. Our model is different in several aspects,

including the presence of product returns and locally-provided product financing.

2.3. Product returns, valuation uncertainty, and marketing

We build upon the literature on operations of reverse logistics systems that support product returns.

In particular, Su (2009) proposes a model where consumers face valuation uncertainty before
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Figure 1 Summary of model parameters and decision variables.

purchasing and proposes contracts that coordinate the supply chain including product returns. In

contrast, we incorporate information control to the consumer and increasing product affordability,

while we ignore aggregate demand uncertainty and do not address the inventory management

component of the problem, which were not significant concerns for Essmart, our industry partner.

Our customer education model and the Pricing Problem’s outcomes are related to the marketing

literature on advance-selling (Shugan and Xie 2000, Xie and Shugan 2001). However, these papers

assume two pricing opportunities before the service is provided: the advance price and the spot

price, where customers’ valuation uncertainty is revealed before the latter. Instead, our model has

one pricing opportunity and the valuation uncertainty is revealed after buying the product.

Shulman et al. (2009) consider a model with risk-neutral consumers and two horizontally differ-

entiated products. They consider a binary decision of providing either full product fit information

or no information to consumers, and identify conditions where it is optimal to provide full informa-

tion. In contrast, we consider a richer information control model and incorporate consumers’ risk

aversion and ATP, which are key characteristics of the BOP (see Shukla and Bairiganjan 2011).

While Shulman et al. (2009) shows that improving information availability might reduce a retailer’s

profits, we describe how the value of information changes with customer ATP and risk-aversion.

3. Model

We introduce a game-theoretic model of a supply chain that distributes a life-improving durable

good designed for BOP customers in a low-income market. The supply chain has three echelons:

the distributor, the retailer, and the customers. As is standard in the literature, we assume that the

distributor anticipates the retailer and customer actions. The model parameters, which we explain

in detail in the remainder of this section, are depicted schematically in Figure 1.

We assume that the market has a constant number of customers. To simplify our notation, we

normalize the total demand to 1, and we work on a per-unit accounting basis. We focus on the

case where there are only two possible customer valuations and two levels of customer financial

distress. This setup provides novel managerial insights and is analytically tractable. In Section 6,

we verify their robustness in a more sophisticated customer model through numerical simulations.
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We introduce the supply chain model in three steps. First, we model customer purchasing behav-

ior in the BOP. Next, we model the retailer’s behavior as well as the distributor’s Pricing and

Allocation Problems. Finally, we describe the sequence of events in the game.

3.1. Base of the Pyramid customers

We assume customers face product uncertainty: they might not know the exact product’s value

before their purchase. Specifically, customers have a valuation vh or vl for the product, where

vh > vl. A fraction β of customers has a high valuation vh, while a fraction 1−β has a low valuation

vl.

Prior to their purchasing decision, the customers may receive a marketing signal from the distrib-

utor (the signal models a marketing campaign). The random variable S ∈ {0,1} indicates whether

a customer received this signal and is informed (S = 1) or uninformed (S = 0). Thus, P(S = 1)= θ

models the reach of the marketing campaign and, ultimately, the customer education level in the

market. We model θ as a strategic decision made by the distributor,6 and we assume θ to be inde-

pendent of customer valuations. For simplicity, we assume that the marketing signal carries perfect

information about the product. If S = 1 the customer learns their true valuation (either vl or vh),

while if S = 0 the customer receives no further information and estimates their valuation based on

the distribution of valuations across the population. This customer education model is similar to

the literature on advance-selling of services (Shugan and Xie 2000, Xie and Shugan 2001).

The retailer chooses the product price p and might offer customers a refund r≤ p if they return

the product. A customer returns the product if, after purchase and use, they find that their val-

uation for the product is less than the refund r. Thus, returns are a real option that guarantees

customers a minimum level of satisfaction from their purchase — Essmart has found that over 30%

of their retailers offer refunds, usually over a two-week return period.

The relationship between poverty and risk aversion, in particular in the BOP, is well established

in the literature (see Haushofer and Fehr 2014). For tractability’s sake, we model BOP customers’

utility function as exhibiting constant absolute risk aversion. Namely, if the customer has a value

v for a product with price p and is offered a refund r, their utility function u is

u(v, p, r) =
1− e−α(max(v,r)−p)

α
,

where α is the risk aversion parameter: the higher α the more risk averse customers are. Hence,

customers explicitly take into account the option value of returning the product in their utility.

A customer’s willingness to pay (WTP) for the product is the maximum price for which the

customer’s expected utility is non-negative. A customer that receives the perfectly informative

6 In practice, companies such as Essmart, Solar Sisters (also a distributor in India), and Bidhaa Sasa (a BOP distrib-
utor in Ghana) invest in developing sales executive teams to promote and run product demonstrations in villages.
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Signal: S
<latexit sha1_base64="R3zJePuN6GDzkUWv+qUZPlEEPyQ=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8FWcFVmulG6KrhxWam9wHQomTTThmaSIckIZehjuHGhiFufxp1vY9rOQlt/CHz85xxyzh8mnGnjut9OYWt7Z3evuF86ODw6PimfnnW1TBWhHSK5VP0Qa8qZoB3DDKf9RFEch5z2wundot57okozKR7NLKFBjMeCRYxgYy2/zcYC8waqtqvDcsWtuUuhTfByqECu1rD8NRhJksZUGMKx1r7nJibIsDKMcDovDVJNE0ymeEx9iwLHVAfZcuU5urLOCEVS2ScMWrq/JzIcaz2LQ9sZYzPR67WF+V/NT010G2RMJKmhgqw+ilKOjESL+9GIKUoMn1nARDG7KyITrDAxNqWSDcFbP3kTuvWaZ/mhXmk28jiKcAGXcA0e3EAT7qEFHSAg4Rle4c0xzovz7nysWgtOPnMOf+R8/gC8KZAx</latexit><latexit sha1_base64="R3zJePuN6GDzkUWv+qUZPlEEPyQ=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8FWcFVmulG6KrhxWam9wHQomTTThmaSIckIZehjuHGhiFufxp1vY9rOQlt/CHz85xxyzh8mnGnjut9OYWt7Z3evuF86ODw6PimfnnW1TBWhHSK5VP0Qa8qZoB3DDKf9RFEch5z2wundot57okozKR7NLKFBjMeCRYxgYy2/zcYC8waqtqvDcsWtuUuhTfByqECu1rD8NRhJksZUGMKx1r7nJibIsDKMcDovDVJNE0ymeEx9iwLHVAfZcuU5urLOCEVS2ScMWrq/JzIcaz2LQ9sZYzPR67WF+V/NT010G2RMJKmhgqw+ilKOjESL+9GIKUoMn1nARDG7KyITrDAxNqWSDcFbP3kTuvWaZ/mhXmk28jiKcAGXcA0e3EAT7qEFHSAg4Rle4c0xzovz7nysWgtOPnMOf+R8/gC8KZAx</latexit><latexit sha1_base64="R3zJePuN6GDzkUWv+qUZPlEEPyQ=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8FWcFVmulG6KrhxWam9wHQomTTThmaSIckIZehjuHGhiFufxp1vY9rOQlt/CHz85xxyzh8mnGnjut9OYWt7Z3evuF86ODw6PimfnnW1TBWhHSK5VP0Qa8qZoB3DDKf9RFEch5z2wundot57okozKR7NLKFBjMeCRYxgYy2/zcYC8waqtqvDcsWtuUuhTfByqECu1rD8NRhJksZUGMKx1r7nJibIsDKMcDovDVJNE0ymeEx9iwLHVAfZcuU5urLOCEVS2ScMWrq/JzIcaz2LQ9sZYzPR67WF+V/NT010G2RMJKmhgqw+ilKOjESL+9GIKUoMn1nARDG7KyITrDAxNqWSDcFbP3kTuvWaZ/mhXmk28jiKcAGXcA0e3EAT7qEFHSAg4Rle4c0xzovz7nysWgtOPnMOf+R8/gC8KZAx</latexit><latexit sha1_base64="R3zJePuN6GDzkUWv+qUZPlEEPyQ=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8FWcFVmulG6KrhxWam9wHQomTTThmaSIckIZehjuHGhiFufxp1vY9rOQlt/CHz85xxyzh8mnGnjut9OYWt7Z3evuF86ODw6PimfnnW1TBWhHSK5VP0Qa8qZoB3DDKf9RFEch5z2wundot57okozKR7NLKFBjMeCRYxgYy2/zcYC8waqtqvDcsWtuUuhTfByqECu1rD8NRhJksZUGMKx1r7nJibIsDKMcDovDVJNE0ymeEx9iwLHVAfZcuU5urLOCEVS2ScMWrq/JzIcaz2LQ9sZYzPR67WF+V/NT010G2RMJKmhgqw+ilKOjESL+9GIKUoMn1nARDG7KyITrDAxNqWSDcFbP3kTuvWaZ/mhXmk28jiKcAGXcA0e3EAT7qEFHSAg4Rle4c0xzovz7nysWgtOPnMOf+R8/gC8KZAx</latexit>

Value: V
<latexit sha1_base64="wfqA1vYFI72tsKBbpb6Kqn75SDk=">AAAB8XicbZA9TwJBEIbn8AvxC7W02QgmVuSORkNFYmOJiRxGuJC9ZQ427O1ddvdMCOFf2FhojK3/xs5/4wJXKPgmmzx5ZyY784ap4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ75OMsWwzRKRqIeQahRcYttwI/AhVUjjUGAnHN/M650nVJon8t5MUgxiOpQ84owaaz36VGTYIFW/2i9X3Jq7EFkHL4cK5Gr1y1+9QcKyGKVhgmrd9dzUBFOqDGcCZ6VepjGlbEyH2LUoaYw6mC42npEL6wxIlCj7pCEL9/fElMZaT+LQdsbUjPRqbW7+V+tmJroOplymmUHJlh9FmSAmIfPzyYArZEZMLFCmuN2VsBFVlBkbUsmG4K2evA5+veZZvqtXmo08jiKcwTlcggdX0IRbaEEbGEh4hld4c7Tz4rw7H8vWgpPPnMIfOZ8/BOyPyQ==</latexit><latexit sha1_base64="wfqA1vYFI72tsKBbpb6Kqn75SDk=">AAAB8XicbZA9TwJBEIbn8AvxC7W02QgmVuSORkNFYmOJiRxGuJC9ZQ427O1ddvdMCOFf2FhojK3/xs5/4wJXKPgmmzx5ZyY784ap4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ75OMsWwzRKRqIeQahRcYttwI/AhVUjjUGAnHN/M650nVJon8t5MUgxiOpQ84owaaz36VGTYIFW/2i9X3Jq7EFkHL4cK5Gr1y1+9QcKyGKVhgmrd9dzUBFOqDGcCZ6VepjGlbEyH2LUoaYw6mC42npEL6wxIlCj7pCEL9/fElMZaT+LQdsbUjPRqbW7+V+tmJroOplymmUHJlh9FmSAmIfPzyYArZEZMLFCmuN2VsBFVlBkbUsmG4K2evA5+veZZvqtXmo08jiKcwTlcggdX0IRbaEEbGEh4hld4c7Tz4rw7H8vWgpPPnMIfOZ8/BOyPyQ==</latexit><latexit sha1_base64="wfqA1vYFI72tsKBbpb6Kqn75SDk=">AAAB8XicbZA9TwJBEIbn8AvxC7W02QgmVuSORkNFYmOJiRxGuJC9ZQ427O1ddvdMCOFf2FhojK3/xs5/4wJXKPgmmzx5ZyY784ap4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ75OMsWwzRKRqIeQahRcYttwI/AhVUjjUGAnHN/M650nVJon8t5MUgxiOpQ84owaaz36VGTYIFW/2i9X3Jq7EFkHL4cK5Gr1y1+9QcKyGKVhgmrd9dzUBFOqDGcCZ6VepjGlbEyH2LUoaYw6mC42npEL6wxIlCj7pCEL9/fElMZaT+LQdsbUjPRqbW7+V+tmJroOplymmUHJlh9FmSAmIfPzyYArZEZMLFCmuN2VsBFVlBkbUsmG4K2evA5+veZZvqtXmo08jiKcwTlcggdX0IRbaEEbGEh4hld4c7Tz4rw7H8vWgpPPnMIfOZ8/BOyPyQ==</latexit><latexit sha1_base64="wfqA1vYFI72tsKBbpb6Kqn75SDk=">AAAB8XicbZA9TwJBEIbn8AvxC7W02QgmVuSORkNFYmOJiRxGuJC9ZQ427O1ddvdMCOFf2FhojK3/xs5/4wJXKPgmmzx5ZyY784ap4Nq47rdT2Njc2t4p7pb29g8Oj8rHJ75OMsWwzRKRqIeQahRcYttwI/AhVUjjUGAnHN/M650nVJon8t5MUgxiOpQ84owaaz36VGTYIFW/2i9X3Jq7EFkHL4cK5Gr1y1+9QcKyGKVhgmrd9dzUBFOqDGcCZ6VepjGlbEyH2LUoaYw6mC42npEL6wxIlCj7pCEL9/fElMZaT+LQdsbUjPRqbW7+V+tmJroOplymmUHJlh9FmSAmIfPzyYArZEZMLFCmuN2VsBFVlBkbUsmG4K2evA5+veZZvqtXmo08jiKcwTlcggdX0IRbaEEbGEh4hld4c7Tz4rw7H8vWgpPPnMIfOZ8/BOyPyQ==</latexit>

vh
<latexit sha1_base64="2vGreJAXIHeHKk1LqoaQw8jB2Ic=">AAAB6nicbZC7SgNBFIbPeo3xtmopyGAQrMKujWIVsLGMaC6QLGF2MpsMmZ1dZs4GwpJHsLFQxNbWl7Gz81GcXApN/GHg4z/nMOf8YSqFQc/7clZW19Y3Ngtbxe2d3b199+CwbpJMM15jiUx0M6SGS6F4DQVK3kw1p3EoeSMc3EzqjSHXRiTqAUcpD2LaUyISjKK17oedfscteWVvKrIM/hxKFffk4xsAqh33s91NWBZzhUxSY1q+l2KQU42CST4utjPDU8oGtMdbFhWNuQny6apjcmadLokSbZ9CMnV/T+Q0NmYUh7Yzptg3i7WJ+V+tlWF0FeRCpRlyxWYfRZkkmJDJ3aQrNGcoRxYo08LuSlifasrQplO0IfiLJy9D/aLsW76zaVzDTAU4hlM4Bx8uoQK3UIUaMOjBIzzDiyOdJ+fVeZu1rjjzmSP4I+f9BwPoj8Q=</latexit><latexit sha1_base64="T88QIcsOQiBt6KALQwXXkjmn9YU=">AAAB6nicbZDLSgMxFIbP1Futt1GXggSL4KrMuFFcFdy4rGgv0A4lk2ba0CQzJJlCGfoIgrhQxK3bvoPPILjwbUwvC239IfDxn3PIOX+YcKaN5307uZXVtfWN/GZha3tnd8/dP6jpOFWEVknMY9UIsaacSVo1zHDaSBTFIuS0HvavJ/X6gCrNYnlvhgkNBO5KFjGCjbXuBu1e2y16JW8qtAz+HIpl93j89fgxrrTdz1YnJqmg0hCOtW76XmKCDCvDCKejQivVNMGkj7u0aVFiQXWQTVcdoVPrdFAUK/ukQVP390SGhdZDEdpOgU1PL9Ym5n+1ZmqiyyBjMkkNlWT2UZRyZGI0uRt1mKLE8KEFTBSzuyLSwwoTY9Mp2BD8xZOXoXZe8i3f2jSuYKY8HMEJnIEPF1CGG6hAFQh04QGe4cXhzpPz6rzNWnPOfOYQ/sh5/wGdH5G2</latexit><latexit sha1_base64="T88QIcsOQiBt6KALQwXXkjmn9YU=">AAAB6nicbZDLSgMxFIbP1Futt1GXggSL4KrMuFFcFdy4rGgv0A4lk2ba0CQzJJlCGfoIgrhQxK3bvoPPILjwbUwvC239IfDxn3PIOX+YcKaN5307uZXVtfWN/GZha3tnd8/dP6jpOFWEVknMY9UIsaacSVo1zHDaSBTFIuS0HvavJ/X6gCrNYnlvhgkNBO5KFjGCjbXuBu1e2y16JW8qtAz+HIpl93j89fgxrrTdz1YnJqmg0hCOtW76XmKCDCvDCKejQivVNMGkj7u0aVFiQXWQTVcdoVPrdFAUK/ukQVP390SGhdZDEdpOgU1PL9Ym5n+1ZmqiyyBjMkkNlWT2UZRyZGI0uRt1mKLE8KEFTBSzuyLSwwoTY9Mp2BD8xZOXoXZe8i3f2jSuYKY8HMEJnIEPF1CGG6hAFQh04QGe4cXhzpPz6rzNWnPOfOYQ/sh5/wGdH5G2</latexit><latexit sha1_base64="CHQH01/ICulgXFLk7tnxJk4B9LY=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSL4qnghePFe0HtKFstpt26WYTdieFEvoTvHhQxKu/yJv/xm2ag7a+sPDwzgw78waJFAZd99spbWxube+Udyt7+weHR9Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHK3qHemXBsRqyecJdyP6EiJUDCK1nqcDsaDas2tu7nIOngF1KBQc1D96g9jlkZcIZPUmJ7nJuhnVKNgks8r/dTwhLIJHfGeRUUjbvwsX3VOLqwzJGGs7VNIcvf3REYjY2ZRYDsjimOzWluY/9V6KYY3fiZUkiJXbPlRmEqCMVncTYZCc4ZyZoEyLeyuhI2ppgxtOhUbgrd68jq0r+qe5Qe31rgt4ijDGZzDJXhwDQ24hya0gMEInuEV3hzpvDjvzseyteQUM6fwR87nD1hajck=</latexit>

vl
<latexit sha1_base64="CCFLZMaaAwe6SZ0xAFf6x01rWm0=">AAAB6nicbZC7SgNBFIbPeo3xtmopyGAQrMKujWIVsLGMaC6QLGF2cjYZMju7zMwGwpJHsLFQxNbWl7Gz81GcXApN/GHg4z/nMOf8YSq4Np735aysrq1vbBa2its7u3v77sFhXSeZYlhjiUhUM6QaBZdYM9wIbKYKaRwKbISDm0m9MUSleSIfzCjFIKY9ySPOqLHW/bAjOm7JK3tTkWXw51CquCcf3wBQ7bif7W7CshilYYJq3fK91AQ5VYYzgeNiO9OYUjagPWxZlDRGHeTTVcfkzDpdEiXKPmnI1P09kdNY61Ec2s6Ymr5erE3M/2qtzERXQc5lmhmUbPZRlAliEjK5m3S5QmbEyAJlittdCetTRZmx6RRtCP7iyctQvyj7lu9sGtcwUwGO4RTOwYdLqMAtVKEGDHrwCM/w4gjnyXl13matK8585gj+yHn/AQn4j8g=</latexit><latexit sha1_base64="JRmEzf1dlTnO8EAj8GvLYaJ/SvQ=">AAAB6nicbZDLSgMxFIbP1Futt1GXggSL4KrMuFFcFdy4rGgv0A4lk2ba0CQzJJlCGfoIgrhQxK3bvoPPILjwbUwvC239IfDxn3PIOX+YcKaN5307uZXVtfWN/GZha3tnd8/dP6jpOFWEVknMY9UIsaacSVo1zHDaSBTFIuS0HvavJ/X6gCrNYnlvhgkNBO5KFjGCjbXuBm3edoteyZsKLYM/h2LZPR5/PX6MK233s9WJSSqoNIRjrZu+l5ggw8owwumo0Eo1TTDp4y5tWpRYUB1k01VH6NQ6HRTFyj5p0NT9PZFhofVQhLZTYNPTi7WJ+V+tmZroMsiYTFJDJZl9FKUcmRhN7kYdpigxfGgBE8Xsroj0sMLE2HQKNgR/8eRlqJ2XfMu3No0rmCkPR3ACZ+DDBZThBipQBQJdeIBneHG48+S8Om+z1pwznzmEP3LefwCjL5G6</latexit><latexit sha1_base64="JRmEzf1dlTnO8EAj8GvLYaJ/SvQ=">AAAB6nicbZDLSgMxFIbP1Futt1GXggSL4KrMuFFcFdy4rGgv0A4lk2ba0CQzJJlCGfoIgrhQxK3bvoPPILjwbUwvC239IfDxn3PIOX+YcKaN5307uZXVtfWN/GZha3tnd8/dP6jpOFWEVknMY9UIsaacSVo1zHDaSBTFIuS0HvavJ/X6gCrNYnlvhgkNBO5KFjGCjbXuBm3edoteyZsKLYM/h2LZPR5/PX6MK233s9WJSSqoNIRjrZu+l5ggw8owwumo0Eo1TTDp4y5tWpRYUB1k01VH6NQ6HRTFyj5p0NT9PZFhofVQhLZTYNPTi7WJ+V+tmZroMsiYTFJDJZl9FKUcmRhN7kYdpigxfGgBE8Xsroj0sMLE2HQKNgR/8eRlqJ2XfMu3No0rmCkPR3ACZ+DDBZThBipQBQJdeIBneHG48+S8Om+z1pwznzmEP3LefwCjL5G6</latexit><latexit sha1_base64="pGwvWCYPsCoTN6NWqcPNxRchRxk=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSL4qnghePFe0HtKFstpt26WYTdieFEvoTvHhQxKu/yJv/xm2ag7a+sPDwzgw78waJFAZd99spbWxube+Udyt7+weHR9Xjk7aJU814i8Uy1t2AGi6F4i0UKHk30ZxGgeSdYHK3qHemXBsRqyecJdyP6EiJUDCK1nqcDuSgWnPrbi6yDl4BNSjUHFS/+sOYpRFXyCQ1pue5CfoZ1SiY5PNKPzU8oWxCR7xnUdGIGz/LV52TC+sMSRhr+xSS3P09kdHImFkU2M6I4tis1hbmf7VeiuGNnwmVpMgVW34UppJgTBZ3k6HQnKGcWaBMC7srYWOqKUObTsWG4K2evA7tq7pn+cGtNW6LOMpwBudwCR5cQwPuoQktYDCCZ3iFN0c6L86787FsLTnFzCn8kfP5A15qjc0=</latexit>

1

0

1 � ✓
<latexit sha1_base64="bKPfaZZy3sOKwVYMvWDTWK8S1hM=">AAAB73icbZDLSgNBEEVrfMb4irp00xgEN4YZEcwy4MZlBPOAZAg9nUrSpOdhd40QhvyEGxeKuPV33Pk3dpJZaOKFhsOtKrrqBomShlz321lb39jc2i7sFHf39g8OS0fHTROnWmBDxCrW7YAbVDLCBklS2E408jBQ2ArGt7N66wm1kXH0QJME/ZAPIzmQgpO12t5ll0ZIvFcquxV3LrYKXg5lyFXvlb66/VikIUYkFDem47kJ+RnXJIXCabGbGky4GPMhdixGPETjZ/N9p+zcOn02iLV9EbG5+3si46ExkzCwnSGnkVmuzcz/ap2UBlU/k1GSEkZi8dEgVYxiNjue9aVGQWpigQst7a5MjLjmgmxERRuCt3zyKjSvKp7l++tyrZrHUYBTOIML8OAGanAHdWiAAAXP8ApvzqPz4rw7H4vWNSefOYE/cj5/AHvBj5A=</latexit><latexit sha1_base64="bKPfaZZy3sOKwVYMvWDTWK8S1hM=">AAAB73icbZDLSgNBEEVrfMb4irp00xgEN4YZEcwy4MZlBPOAZAg9nUrSpOdhd40QhvyEGxeKuPV33Pk3dpJZaOKFhsOtKrrqBomShlz321lb39jc2i7sFHf39g8OS0fHTROnWmBDxCrW7YAbVDLCBklS2E408jBQ2ArGt7N66wm1kXH0QJME/ZAPIzmQgpO12t5ll0ZIvFcquxV3LrYKXg5lyFXvlb66/VikIUYkFDem47kJ+RnXJIXCabGbGky4GPMhdixGPETjZ/N9p+zcOn02iLV9EbG5+3si46ExkzCwnSGnkVmuzcz/ap2UBlU/k1GSEkZi8dEgVYxiNjue9aVGQWpigQst7a5MjLjmgmxERRuCt3zyKjSvKp7l++tyrZrHUYBTOIML8OAGanAHdWiAAAXP8ApvzqPz4rw7H4vWNSefOYE/cj5/AHvBj5A=</latexit><latexit sha1_base64="bKPfaZZy3sOKwVYMvWDTWK8S1hM=">AAAB73icbZDLSgNBEEVrfMb4irp00xgEN4YZEcwy4MZlBPOAZAg9nUrSpOdhd40QhvyEGxeKuPV33Pk3dpJZaOKFhsOtKrrqBomShlz321lb39jc2i7sFHf39g8OS0fHTROnWmBDxCrW7YAbVDLCBklS2E408jBQ2ArGt7N66wm1kXH0QJME/ZAPIzmQgpO12t5ll0ZIvFcquxV3LrYKXg5lyFXvlb66/VikIUYkFDem47kJ+RnXJIXCabGbGky4GPMhdixGPETjZ/N9p+zcOn02iLV9EbG5+3si46ExkzCwnSGnkVmuzcz/ap2UBlU/k1GSEkZi8dEgVYxiNjue9aVGQWpigQst7a5MjLjmgmxERRuCt3zyKjSvKp7l++tyrZrHUYBTOIML8OAGanAHdWiAAAXP8ApvzqPz4rw7H4vWNSefOYE/cj5/AHvBj5A=</latexit><latexit sha1_base64="bKPfaZZy3sOKwVYMvWDTWK8S1hM=">AAAB73icbZDLSgNBEEVrfMb4irp00xgEN4YZEcwy4MZlBPOAZAg9nUrSpOdhd40QhvyEGxeKuPV33Pk3dpJZaOKFhsOtKrrqBomShlz321lb39jc2i7sFHf39g8OS0fHTROnWmBDxCrW7YAbVDLCBklS2E408jBQ2ArGt7N66wm1kXH0QJME/ZAPIzmQgpO12t5ll0ZIvFcquxV3LrYKXg5lyFXvlb66/VikIUYkFDem47kJ+RnXJIXCabGbGky4GPMhdixGPETjZ/N9p+zcOn02iLV9EbG5+3si46ExkzCwnSGnkVmuzcz/ap2UBlU/k1GSEkZi8dEgVYxiNjue9aVGQWpigQst7a5MjLjmgmxERRuCt3zyKjSvKp7l++tyrZrHUYBTOIML8OAGanAHdWiAAAXP8ApvzqPz4rw7H4vWNSefOYE/cj5/AHvBj5A=</latexit>

✓
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E[u(V, p, r)]

Figure 2 Customer utility. A fraction λ of customers have ATP mh and a fraction 1−λ have ATP ml.

marketing signal (S = 1) has a WTP vh or vl, depending on their (known) product valuation.

Conversely, a customer that is uninformed (S = 0) has a WTP that depends on their expected

utility, which we describe next. Let V be a random variable that describes the valuation of a

customer chosen at random. Then, the expected utility of an uninformed customer is

E[u(V,p, r)] =
β

α

(
1− e−α(max(vh,r)−p)

)
+

1−β

α

(
1− e−α(max(vl,r)−p)

)
. (1)

As a result, the WTP of uninformed customers, pα(r), solves E[u(V,pα(r), r)] = 0. Since E[u(V,p, r)]

is strictly decreasing in p, pα(r) exists and is unique – see Appendix B.1 for a derivation of pα(r).

We model the significant credit and liquidity constraints BOP customers face by assuming that

their ability to pay (ATP) for life-improving products is potentially lower than their WTP. This

assumption is consistent with recent empirical research (see Tarozzi et al. 2014, Dupas 2014a).

We assume a fraction λ of customers have ATP mh and a fraction 1− λ have ATP ml, where

mh ≥ ml. If p > ml then no customer with ATP ml will purchase the good, even if their WTP

is larger than p (if p > mh then no customer purchases the product). As a result, a customer

only purchases the product if both her WTP and ATP are larger than p. We model mh and ml as

exogenous parameters and we assume vl ≤ml ≤mh ≤ vh. This assumption is commonly found in

the development economics literature, e.g. Banerjee (1997) and Banerjee et al. (2012). Assuming

other orderings of vl, vh, ml and mh does not lead to additional insights.

We now describe the probability of a customer purchasing and returning the product, as well as

their expected surplus. Let W and M be random variables that represent, respectively, the WTP

and ATP of a randomly chosen customer. The distribution of W and M are

P(W = ω) =


θ ·β if ω= vh,

θ · (1−β) if ω= vl,

1− θ if ω= pα(r).

, P(M =m) =

{
λ if m=mh,

1−λ if m=ml.

Figure 2 depicts the distribution of customer utility. Let 1{e} denote the indicator function of the

event e. Then, given a price p, refund r, and subsidy x, the fractions of customers that purchase
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and return the product are B(p, r, θ) := E[1{W≥p,M≥p}|θ] and R(p, r, θ) := E[1{W≥p,M≥p,V <r}|θ],
respectively. The expected customer surplus, CS(p, r, θ), is

CS(p, r, θ) :=E[(V − p)1{W≥p,M≥p,V≥r}|θ]− (p− r)E[1{W≥p,M≥p,V <r}|θ]. (2)

To summarize, θ describes the customer education level; mh and ml characterize BOP customers’

financial distress and the product’s affordability; the probability β and the valuations vl and vh

capture characteristics of the product’s design; α describes customers’ risk aversion; and the equi-

librium price p and refund r determine BOP customers’ access to the product. Together, these

parameters provide a tractable model of BOP customers’ behavior.

3.2. Retailer

We consider a profit-maximizing retailer that buys the product from the distributor at a cost c and

sells it to the customers at a price p, while offering a refund r for returns. Moreover, the distributor

offers a salvage value z per unit returned by customers to the retailer. The retailer’s profit is

ΠR(p, r) = (p− c) ·B(p, r, θ)− (r− z) ·R(p, r, θ).

The retailer can choose an outside option instead of selling the distributor’s product, which we

normalize to zero. The outside option could be an alternative product or competing technology.

Since most BOP retailers have limited shelf space, distributors often ensure frequent product

replenishment. In fact, most of Essmart’s retailers sell its products delivered-to-order: whenever a

sale occurs, the item is delivered to the retailer, and the customer collects the product there. For

these reasons, we do not explicitly model the retailer’s inventory management problem.

3.3. Distributor

The distributor purchases products from the manufacturer at a wholesale cost w and sells them to

retailers in the BOP market. To rule out trivial outcomes, we assume throughout that the product

has a potentially profitably market, i.e., the customers’ lowest ATP is larger than the wholesale

cost, w ≤ ml. Any product returned by the retailer is salvaged for a unit value y. We assume

that the distributor, as a social enterprise, values consumer surplus. Specifically, the distributor’s

objective function is a linear mix of profits and consumer surplus.

The distributor makes four decisions. The first two are pricing decisions, where the distributor

chooses the retailer’s price c and refund z. The distributor also makes two strategic decisions: a

potential discount or subsidy to the customer, which we denote by x per item, and the proportion

of “informed” customers θ. A subsidy of x makes the effective price that customers face p−x. The

subsidy x is usually operationalized in the form of a discount coupon, voucher, rebate, or agreement
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with a microfinance institution.7 In practice, companies like Essmart increase θ by investing in

marketing campaigns and product demonstrations in BOP communities.

As discussed in Section 1, we consider two optimization problems that many BOP distributors

face. The first is the Pricing Problem where the distributor chooses c and z. For a given subsidy x

and customer education level θ this problem is

Π∗
D(x, θ) =max

c,z
(c−w) ·B(p∗ −x, r∗, θ)− (z− y) ·R(p∗ −x, r∗, θ)+ γ ·CS(p∗ −x, r∗, θ)

s.t. {p∗, r∗} ∈ argmax
p,r

(p− c) ·B(p−x, r, θ)− (r− z) ·R(p−x, r, θ) (IC)

(p∗ − c) ·B(p∗ −x, r∗, θ)− (r∗ − z) ·R(p∗ −x, r∗, θ)≥ 0. (IR)
(Pricing Problem)

The first two terms in the objective function correspond to the distributor’s expected profit minus

the expected cost of returns, and the parameter γ ≥ 0 models the distributor’s relative value for

consumer surplus. The first constraint corresponds to the retailer’s incentive compatibility, i.e., the

retailer chooses the profit-maximizing customer price and refund. Note that the subsidy x changes

the customer purchase and return probabilities. The second constraint corresponds to the retailer’s

individual rationality, i.e., the retailer’s profit should be at least its outside option.

The second problem the distributor faces is the Allocation Problem. The distributor allocates an

investment budget between (1) increasing the subsidy x (a financial lever); and (2) an investment

in increasing the customer education level θ (an information lever). The investment budget could

represent, for example, a grant from a foundation or aid agency to improve the distributor’s oper-

ations. We assume that the budget is earmarked to be spent exclusively between options (1) and

(2), i.e. the distributor does not simply keep the investment budget for itself.

In more detail, the distributor allocates a budget b per customer between increasing customers’

ATP and improving customer education. We denote the marginal cost of the former by cθ and

assume that only customers that purchase the product receive the subsidy. Thus, given some initial

customer educational level θ0 and customers’ ATP m, the distributor chooses θ and x that solve

maximize
x,θ

Π∗
D(x, θ)

subject to cθ(θ− θ0)+xB(p∗ −x, r∗, θ)≤ b,

θ0 ≤ θ≤ 1,0≤ x≤ vh − p∗.

(Allocation Problem)

The objective function of the Allocation Problem is the optimal objective value of the Pricing

Problem, while p∗ and r∗ are functions of x and θ. We assume a natural upper bound on the

subsidy x≤ vh−p∗, i.e., the distributor never increases the customers’ ATP above their maximum

WTP. This constraint is equivalent to assuming that the maximum non-discounted price for the

7 For various case studies on the implementation of leasing models and product financing for the distribution of
life-improving good, see Clean Cooking Alliance (2015, 2019).
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product will be at most the largest possible customer WTP (which is vh). This constraint has a

practical motivation since unbounded discounts are unrealistic. Relaxing the constraint x≤ vh−p∗

does not affect our main insights, although it does slightly simplify our analysis.

In addition, we assume that the distributor’s budget can at most fully maximize the ATP of all

customers (i.e. set p∗ +x= vh for everyone) and maximize customer education (i.e. set θ= 1).

Assumption 1 Assume that the distributor’s budget is at most enough for both the customers’

ATP and the customer education to reach their upper bounds, i.e., b≤ cθ(1− θ0)+λβ(vh −mh).

The term cθ(1−θ0)+λβ(vh−mh) above comes from the fact that when θ= 1 and p∗ =mh only the

customers with a high valuation and high ATP buy and B(mh−x, r∗, θ)≤ λβ. Relaxing Assumption

1 does not change our insights.

3.4. Sequence of events and model discussion

We model the distributor as a Stackelberg leader. The dynamics of the game are as follows:

1. Given θ0, ml, mh, λ, and α , as well as w, y, β, vh, and vl, the distributor solves the Allocation

Problem and chooses its strategic investments. This results in x and θ.

2. Given x and θ, the distributor then chooses c and z by solving the Pricing Problem, antici-

pating the reaction from the retailer and customers;

3. The retailer chooses p and r after observing x, θ, c, and z, with knowledge of β, vh, vl, ml,

mh, λ, and α. The retailer then sells the product if its expected profit is non-negative;

4. Customers p, r, x, and their individual information signal S. Each customer purchases the

product if their WTP and ATP are both larger than the effective price p−x;

5. If a purchase occurs, the product is delivered to the retailer and picked by the customer;

6. An uninformed customer (S = 0) that makes a purchase learns their true valuation (vh or vl)

from using the product, and returns it if the valuation is less than r;

7. The retailer salvages the returns for z per unit while distributor salvages them for y per unit.

Our model blends elements from the operations and development economics literature (Shulman

et al. 2009, Banerjee et al. 2012). Consistent with operations management literature (Su 2009,

Shulman et al. 2009), full refunds are suboptimal in our model even if ATP is lower than WTP.

We examine the Pricing and Allocation Problems in three steps. First, in Section 4, we assume

that all customers have the same ATP, i.e., ml =mh. This assumption is common in the develop-

ment economics literature, e.g., Banerjee (1997). This simplified setup already provides insight into

the effects of limited customer ATP on the customer welfare and on the distributor’s investment

strategy. Second, in Section 5, we extend Section 4’s results to the case where ml <mh, and show

that this feature creates an additional incentive for the retailer to skim the market. Finally, in

Section 6, we replicate our main insights in a model with continuous customers ATP and WTP.
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4. Pricing and Resource Allocation Problems with Homogeneous ATP

We now solve the Pricing Problem and the Allocation Problem when mh =ml =m, and examine

how the distributor’s optimal strategy critically depends on customers’ ATP and risk aversion.

Section 4.1 examines the Pricing Problem while Section 4.2 examines the Allocation Problem.

Section 4.3 considers the setup where the distributor commits to offering free returns to customers,

i.e., customers can purchase the product and return it for a full refund if their valuation is low.

4.1. Pricing Problem with Homogeneous ATP

We first introduce notation to characterize the Pricing Problem’s optimal solution when mh =

ml =m. Let rα(p) denote the minimum retailer’s refund for uninformed customers to purchase the

product at price p. Thus, rα(p) satisfies E[u(V,p, rα(p))] = 0 and from Equation 1 we have

rα(p) =

(
p− 1

α
ln

(
1−βe−α(vh−p)

1−β

))+

, where (·)+ =max(·,0). (3)

Proposition B.1 in Appendix B.1 states the Pricing Problem’s optimal solution and describes

the distributor’s two possible non-dominated pricing strategies, which we denote strategies (a)

and (b). In strategy (a), the distributor induces the retailer to target only informed customers

without accepting product returns. Thus, for a discount x, the product’s effective retail price is

p− x=m, r = 0 and a fraction θβ of customers purchase the product. Conversely, strategy (b) is

more nuanced: the distributor induces the retailer to expand sales by accepting product returns and

offering refunds if necessary. In this case, p− x=m and r = rα(m). Under strategy (b), informed

customers with high valuation as well as all uninformed customers purchase the product, i.e., a

fraction θβ+(1−θ) of customers buy the product. Uninformed customers with low valuation return

the product, i.e., a fraction (1− θ)(1−β) of customers purchase and then return the product. The

optimal outcomes of the Pricing Problem are similar to the outcomes in Shugan and Xie (2000).

The Pricing Problem’s optimal solution provides a few insights into how the equilibrium price and

refund interact with model parameters. First, the function rα(p) sheds light into how the customers’

risk aversion level affects the optimal refund offered by the retailer under strategy (b). Namely,

consider the effective price, p − x = m, perceived by customers in their utility function. From

Equation 3, if customers are risk neutral, then offering partial refunds is sufficient for uninformed

customers to purchase the product, i.e., limα→0 rα(m) =
(

m−βvh
1−β

)+

<m. Conversely, if customers

are extremely risk averse (in the limit max-min utility optimizers) then the retailer must refund

the full (post-discount) price to induce uninformed customers to buy, i.e., limα→∞ rα(m) =m.

Second, as stated in Proposition B.1, the distributor only induces the retailer to target unin-

formed customers when the expected value from selling to an uninformed customer is higher than

the expected cost of processing a return, independent of the consumer education level θ.
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Third, the dependence of the distributor’s optimal pricing strategy on market parameters

becomes intuitive once we focus on the marginal contribution of uninformed customers to the dis-

tributor’s objective. Increasing salvage value, decreasing risk aversion, or decreasing price, all make

it “easier” to target uninformed customers and increases the attractiveness of pricing strategy (b).

Finally, the effect of the distributor’s value for consumer surplus γ on the optimal pricing strategy

is less straightforward. On the one hand, as γ increases, strategy (b) might become more attractive

relative to strategy (a) since it delivers positive surplus to some uninformed customers. On the other

hand, if the refund that the retailer offers to customers rα(m) is too low, uninformed customers that

purchase and return the product might end-up with negative surplus. Hence, depending on market

and product parameters, increasing γ might make strategy (b) either more or less attractive.

The consumer surplus induced by both strategies (a) or (b) in Proposition B.1 decreases in

the customers’ ATP m and is independent of the distributor’s subsidy for consumers x. These

effects happens because any increase in customer ATP is recaptured by the supply chain through

a price increase — these features follow from customers’ homogeneous ATP, the Stackelberg game

structure of the model, and are standard in the development economics literature from where we

borrow the ATP formulation, e.g. Banerjee (1997). When ml <mh, the consumer surplus might

increase with the average ATP as we discuss in the next section.

Proposition 1 provides comparative statics on the effects of θ and x on the distributor’s objective.

Proposition 1 Providing a subsidy x ≥ 0 can only improve the distributor’s objective value.

Namely, let Π∗
D be the distributor’s optimal objective value, then

∂Π∗
D

∂x
≥ 0. In contrast, increasing

the consumer education level θ might worsen the distributor’s objective value. Specifically,

∂Π∗
D

∂θ
≤ 0 if and only if m+x−w− (rα(m)− y)− γ(m− rα(m))≥ 0. (4)

Additionally, for the distributor, x and θ are strategic complements under strategy (a) in Propo-

sition B.1, while they are strategic substitutes under strategy (b) in Proposition B.1.

Proposition 1 states that if customers’ ATP is low, or if the product’s salvage value is high, then

increasing the consumer education level might actually be prejudicial to the distributor. Indeed, the

left hand side of Equation 4 is the total contribution of a returned unit to the distributor’s objective.

Specifically, m+ x−w is the distributor’s margin on each sale, rα(m)− y is the distributor’s cost

for each returned product, and γ(m− rα(m)) is the cost perceived by the distributor due to the

negative consumer surplus attained by customers who return the product. If the total contribution

is positive, then returned products are valuable to the distributor and, as a result, increasing the

consumer education level can reduce the distributor’s objective.
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Figure 3 Distributor’s profits for different ATP m and consumer education level θ. We assume vh = $10, vl = 0,

w= $6, y= $4, x= 0, β = 0.6, and γ = 0.

In particular, if the distributor’s relative value for consumer surplus is moderate (γ < 1), a

lower customer ATP m results in the inequality in Equation 4 being violated by a larger subset of

possible market and customer parameters. Thus, for a lower customer ATP, improving consumer

education has a negative impact on the distributor’s objective for a larger set of market and

customer parameters. Figure 3(a) illustrates this result for a set of problem parameters — note

how for m> $8.4 increasing θ decreases the distributor’s objective.

As the risk aversion parameter α increases, pricing strategy (a) becomes relatively more attractive

since rα(m) is increasing in α. In strategy (b), as α increases, the marginal cost of returned products

increases, and the set model parameters that violate the inequality in Equation 4 also increases.

Hence, as α increases, increasing θ benefits the distributor for a larger set of market and customer

parameters — contrasting Figure 3(a) and Figure 3(b) illustrates this observation.

Finally, Proposition 1 states that the interaction between improving consumer education and

improving affordability is not the same under different pricing strategies. In strategy (a), they are

complements. Namely, if the distributor only targets informed consumers, increasing θ increases the

effective market size and the marginal value of x. Conversely, in strategy (b), they are substitutes.

The cost of returned products drives this substitution effect. As x increases, the cost associated

to product returns decreases. Moreover, increasing θ reduces the volume of returns. Hence, if θ is

large then less financing is needed to reduce the costs of returns, reducing the marginal value of x.

With the solution of the Pricing Problem in hand, we now examine the Allocation Problem.

4.2. Allocation Problem

In this section, we characterize the solution to the Allocation Problem, where the distributor

allocates a budget between consumer education and increasing customers’ ATP. We examine how

ATP and risk aversion, as well as the distributor’s relative value for consumer surplus affects the

distributor’s investment strategy and, ultimately, value creation in the BOP context. Theorem 1
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below characterizes the four possible distributor’s non-dominated investment allocation strategies: a

finance-based strategy (F ) where the distributor increases x; a marketing-based strategy (M) where

the distributor increases θ; a finance-based strategy including returns (FR) where the distributor

increases x and also offers customers a return option; and a marketing strategy including returns

(MR) where the distributor increases θ and also offers customers a return option.

Theorem 1 The distributor has four non-dominated strategies in the Allocation Problem, which

we denote by F , M , FR, and MR:

• F : invest the budget in improving product affordability by increasing x. If there is enough

budget to set x= vh −m, invest the remaining budget in increasing θ. The distributor follows

pricing strategy (a) from Proposition B.1, targeting only informed customers.

• M : invest the budget in increasing the consumer education level θ. If there is enough budget to

set θ= 1, invest the remaining budget in increasing x. The distributor follows pricing strategy

(a) from Proposition B.1, targeting only informed customers.

• FR: invest the budget in improving product affordability by increasing x. If there is enough

budget to set x= vh−m, the remaining budget is invested in increasing θ if vh−w− (rα(m)−
y)−γ(m−rα(m))< 0, and not invested otherwise. The distributor follows pricing strategy (b)

from Proposition B.1, targeting all customers by accepting product returns.

• MR: invest the budget as in strategy M . However, the distributor follows pricing strategy (b)

from Proposition B.1, targeting all customers by accepting product returns.

In practice, strategy F could represent an investment by the distributor in discount coupons,

vouchers or micro-financing for customers. Strategy M could be an investment in marketing cam-

paigns or village demonstrations. In strategies FR and MR, the distributor complements the

previous strategies by inducing the retailer to offer product returns. Offering returns, or even free

trials, are relatively novel strategies to profitably distribute life-improving products in the BOP

and are being used by companies like Essmart and a select number of other distributors.8

Strategy FR is more nuanced than the other strategies. In FR, the distributor allocates as much

budget as possible to increasing x. If the distributor has enough budget to set customers’ ATP to

vh, i.e. x= vh−m, then it allocates the remaining budget in one of two possible ways: if Equation 4

does not hold and, as a result, increasing θ improves the distributor’s objective, then the remaining

budget is allocated to increasing θ; if Equation 4 holds, then the remaining budget is not invested.

If we relax the constraint x≤ vh −m, i.e. if we allow customers’ ATP to be larger than vh, then

the structure of strategy FR simplifies, in that all the budget is spent on x. However, this does

not change our main results and insights, which are detailed next.

8 For example, Burro (a distributor in Ghana), EcoZoom (Kenya), and Pollinate Energy (India).
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Propositions B.2, B.3 and B.4 in the Appendix fully characterize the optimal investment strategy

map for the Allocation Problem as a function of the two parameters that define customer behavior

in the BOP: the (homogeneous) ATP m and the risk aversion parameter α, see Figure 4 for an

illustration. The propositions specify necessary and sufficient conditions for each of the four non-

dominated allocation strategies in Theorem 1 to be optimal. To facilitate discussion, we introduce

a corollary to summarize the propositions’ main insights.

To simplify the notation, we define w̄ = βvh + (1− β)y and c̄θ = (1− β)(w− y). We provide an

interpretation of w̄ and c̄θ in the discussion of the following corollary.

Corollary 1 Recall the allocation strategies from Theorem 1. Then, if w ≤ w̄ and cθ ≤ c̄θ, there

exist ATPs mF , mMR, and m̄MR where mF ≤mMR, m̄MR ≤ vh, and a function aF (m) such that:

• Strategy F is optimal if and only if m≤mF and α≥ aF (m).

• Strategy MR is optimal if m≥max(mMR, m̄MR) for all α≥ 0.

If w > w̄ then only strategies F and M can be optimal. In this case, there exists an ATP mF

such that F is optimal if and only if m≤mF .

If cθ > c̄θ then only strategies F and FR can be optimal. In this case, there exists a function

aF (m) such that F is optimal if and only if α≥ aF (m).

Corollary 1 differentiates between two types of products: Products that, in expectation, can be

profitably distributed to uninformed customers, i.e., products where β(vh−w)+(1−β)(y−w)≥ 0

(equivalently, where w ≤ w̄) and products that cannot be profitably distributed to uninformed

customers (where w> w̄). When products can be profitably distributed to uninformed customers,

all four strategies can be optimal. When products cannot be profitably distributed to uninformed

customers, only strategies F and M can be optimal.

Similarly, Corollary 1 differentiates between two possible setups. The first are setups where

the cost of informing consumers about the product is not excessively large, i.e., setups where

cθ ≤ (1− β)(w− y) = c̄θ. The second are setups where the cost of informing consumers about the

product is larger than the expected cost incurred by letting uninformed consumers simply try the

product out, i.e., such that cθ > (1−β)(w− y) = c̄θ. When the cost of informing consumers about

the product is moderate, all four strategies can be optimal. When the cost of informing consumers

about the product is excessively large, then only strategies F and FR can be optimal.

Figure 4 depicts the strategy map for a set of problem parameters and illustrates Proposition B.2

and Corollary 1. If customers’ ATP is low, then it is optimal for the distributor to invest in offering

customers a discount x to improve affordability (strategies F and FR in Figure 4). Conversely, if

customers’ ATP is high, the distributor should invest in customer education θ (strategies M and

MR in Figure 4). Additionally, for any ATP, if customers’ risk aversion level is low enough, then
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(a) γ = 0 (b) γ = 0.4

Figure 4 Strategy map for the Allocation Problem as a function of m and α for different values of γ. We assume

vh = $10, w= $7, θ= 0.2, b= $0.5, y= $3.25, β = 0.6, cθ = 1.

it is optimal for the distributor to induce the retailer to target uninformed customers, by accepting

product returns and possibly offering refunds (note strategies FR and MR in Figure 4).

This relationship between customers’ risk aversion and strategy choice occurs because, when

customer risk aversion is high, the refund necessary to attract uninformed customers is overly large,

making this customer segment unprofitable due to the high cost of returns. In contrast, when risk

aversion is moderate or low, uninformed customers might be valuable if the distributor’s budget is

sufficient to increase customers’ ATP above a certain threshold.

In particular, Corollary 1 and Figure 4 show that the most profitable investment strategy in a

BOP context (where α is high and m is low) might not be the same as in the non-BOP context

(where α is low and m is high). For example, in Figure 4 strategy F is the most profitable in a BOP

context while MR is the most profitable in a non-BOP context. A natural question that follows is

whether a similar difference occurs if the distributor were to maximize consumer surplus instead of

profits. This question is answered in the next proposition. We denote the consumer surplus under

strategies F , M , FR, and MR by CSF , CSM , CSFR, and CSMR, respectively.

Proposition 2 Recall the allocation strategies from Theorem 1, and the ATP mF and the function

aF (m) from Corollary 1. There exists a function acs
F (m) such that, for any customers’ risk aversion

level α≥ 0 and customers’ ATP m w≤m≤ vh,

• Strategy MR induces the largest consumer surplus among all strategies from Theorem 1. More-

over, CSMR ≥CSM ≥CSF ;

• Strategy F induces the smallest consumer surplus among all strategies from Theorem 1 if and

only if α≥ acs
F (m).
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The intuition behind Proposition 2 is as follows. On the one hand, strategies that involve accept-

ing product returns (FR and MR) can induce a higher total consumer surplus than their counter-

part strategies that do not accept product returns (F and M) since, when the distributor offers a

product return option, all consumers with high valuation adopt the product and extract positive

surplus. On the other hand, customers with a low valuation that buy the product (because of lack

of information) will have negative surplus, since they receive a partial refund that is smaller than

their payment, thus reducing total consumer surplus.

Furthermore, strategies that invest primarily in consumer education (M and MR) can lead to

higher total consumer surplus than finance-based strategies (F and FR). This holds because the

subsidies offered by the distributor to customers in strategies F and FR are ultimately recaptured

by the supply chain through higher prices and, as a result, are ineffective in increasing consumer

surplus. Conversely, the information provided through consumer education in strategies M and

MR cannot be fully recaptured by the supply chain and hence increases consumer surplus.

Proposition 2 shows that strategy MR attains the largest consumer surplus, i.e., the distributor

increases the total consumer surplus by inducing the retailer to accept product returns and by

educating consumers about the product’s benefits. In particular, Proposition 2 implies that as the

distributor’s relative value for consumer surplus γ increases, then strategy MR becomes optimal

for larger set of all admissible model parameters, while strategy F becomes optimal for a smaller

set. This insight is illustrated in Figure 4b — note how strategy MR occupies a larger portion of

the strategy map while strategy F a smaller portion compared to Figure 4a — and is particularly

relevant for social enterprises operating in the BOP context.

The combination of Proposition 2 and Corollary 1 indicates that there is tension between max-

imizing profits and consumer surplus in the BOP, which does not necessarily occur in non-BOP

contexts. Namely, in a BOP context with high risk aversion (α≥max(aF (m), acs
F (m))) and small

ATP (m≤mF ), strategy F is the most profitable. However, in this regime the profit maximizing

allocation strategy F also leads to the lowest total consumer surplus. Hence, in the BOP the most

profitable allocation strategy and the total consumer surplus maximizing strategy are not the same.

Conversely, in a non-BOP context with large ATP (m ≥ max(mMR, m̄MR)) the most profitable

strategy is MR, which also leads to the largest consumer surplus.

We emphasize that this insight applies to the simplified setups in Corollary 1 where only two

strategies can be optimal. Both simplified setups in Corollary 1 include strategy F which, from

Proposition 2, induces the lowest consumer surplus in the BOP. Thus the tension between maxi-

mizing profits and consumer surplus in the BOP is preserved in these setups.

In the next subsection we explore a practical strategy that the distributor can commit to when

operating in the BOP, which resolves the tension between profits and consumer surplus.
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4.3. Decoupling profits and consumer surplus by offering free returns

Corollary 1 and Proposition 2 show that, in the BOP context, the most profitable allocation

strategy (strategy F ) is the strategy that leads to lowest consumer surplus. Furthermore, even

the strategy that leads to the highest consumer surplus (strategy MR) has the downside that

uninformed customers with low valuation will have negative surplus if they purchase and then

return the product. To resolve these issues we examine a free returns strategy (which is equivalent

to offering free product trials in our model). Specifically, we assume that the distributor commits

to offering customers the option of returning the product for a full refund. This commitment

occurs at the start of the game, before the allocation of the investment budget. We remark that

there is recent field evidence that free trials are an effective strategy for increasing adoption of

life-improving products, such as cookstoves (Levine et al. 2018).

Although a free-returns commitment can only reduce the distributor’s maximum profits, it has

two main advantages. First, it guarantees that no customer ends up with negative surplus by trying

out the product. Hence, in effect, free returns transfer the product’s “fit risk” from the customer to

the distributor (Che 1996). Second, we will show that the distributor’s commitment to free returns

ensures that the total consumer surplus is maximized independently of the allocation strategy. In

other words, this commitment decouples the effects of distributor’s profit-maximizing actions from

worst-case consumer surplus. Thus, offering free returns can serve as a signal from the distributor

to its social investors and other stakeholders that it is indeed valuing consumer surplus, satisfying

an important ethical consideration when doing business in the BOP (Davidson 2009).

In this setting, we assume a wholesale contract that forces the retailer to set r = p− x. Recall

that p−x is the effective customer price after a distributor’s subsidy x. The model details and the

resulting distributor’s pricing strategy are given in Proposition B.5 in the Appendix.

Proposition B.5 shows that, when the distributor commits to full refunds, the total consumer

surplus is constant and equal to (vh−m)β, independently of the values of x and θ. We note that this

consumer surplus value is larger than the one induced by strategy MR in the allocation problem

and, from Proposition 2, is larger than any non-dominated distributor’s budget allocation strategy.

The Allocation Problem under a free-returns commitment has only two non-dominated strategies:

FR and MR. The next proposition describes the optimal allocation strategy. The same outcomes

for each strategy are achieved by assuming that customers are extremely risk averse, i.e., taking

the limit as α→∞ making customers max-min utility optimizers.

Proposition 3 Assume that the distributor commits to a free returns policy, then the distributor

has two non-dominated strategies for the Allocation Problem, which we denote by FRf , and MRf .

In both strategies the distributor follows the pricing strategy from Proposition B.5.
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• FRf : invest the budget in improving product affordability by increasing x. If there is enough

budget to set x= vh −m, the remaining budget is invested in increasing θ if vh −m<w− y

and not invested otherwise.

• MRf : invest the budget in increasing the consumer education level. If there is enough budget

to set θ= 1, the remaining budget is invested in increasing x.

Moreover, strategy MRf is preferred by the distributor if and only if (1−β)(w− y)≥ cθ.

The allocation strategies in Proposition 3 follow the same intuition as the strategies in Theorem

1. However, in the free-returns case, the condition for choosing between investing in θ and x is

simpler: if the expected cost of a returned product, given by (1− β)(w − y), is higher than the

marginal cost of investing in consumer education, given by cθ, then the distributor should choose

strategy MRf . Conversely, if (1−β)(w− y)< cθ the distributor chooses strategy FRf .

5. Pricing and Resource Allocation Problems with Heterogeneous
ATP

This section extends the previous results to the case where mh >ml. In this case, the retailer and

distributor have the option to “skim” the market and choose a price such that only customers with

high ATP mh are able to afford the product. While the results from the previous section still hold

in this setup, the supply chain equilibrium is more nuanced due to price skimming. Specifically,

more non-dominated strategies for the pricing and allocation problem exist.

When mh >ml, there are four possible non-dominated pricing strategies for the distributor:

• A: Target all informed customers without product returns. The equilibrium price is pA =ml+x

and rA = 0. All customers that receive information signal S = 1 purchase the product.

• AR: Target all customers and offer product returns, pAR = ml + x and rAR = rα(ml). All

customers purchase the product and a fraction 1−β (with valuation vl) return it for a refund.

• S: Skim the market and target informed customers with ATP mh without product returns.

The equilibrium price is pS = mh + x and rS = 0. The fraction λθ of customers that have

valuation mh and receive information signal S = 1 purchase the product.

• SR: Skim the market targeting customers with ATP mh and offer product returns, pSR =

mh + x and rSR = rα(mh). The fraction λ of customers with ATP mh purchase the product

and a fraction 1−β of those who purchased with valuation vl return it for a refund.

Proposition C.1 in the Appendix fully characterizes these equilibrium pricing strategies, including

the profits of the distributor and retailer. Strategies S and SR are “skimming” strategies where

customers with low ATP ml cannot afford the product.

In the remainder of our analysis we make the following two assumptions that allow for an

analytical treatment of the Allocation Problem with heterogeneous ATP.
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Assumption 2 Assume that:

1. When there is no risk aversion (α= 0), the purchasing decision of uninformed customers with

high ATP mh only depends on their expected valuation, i.e., mh >βvh;

2. For any risk aversion level, offering a refund of rα(ml) to all customers is more expensive than

offering a refund rα(mh) only to customers with high ATP mh, i.e., rα(ml)≥ λrα(mh) for all α.

Since limα→0 rα(p) =
(

p−βvh
1−β

)+

, this assumption is equivalent to (ml−βvh)
+ ≥ λ(mh−βvh)

+.

The first part of the assumption above states that when customers are risk neutral at least some

of the uninformed customers — those with high ATP mh — base their purchasing decision on their

expected valuation instead of their ATP. When this condition is not met, risk neutral uninformed

customers with high ATP mh always purchase the product as long as the price is lower than mh.

The second part of the assumption is consistent with the context in which BOP distributors

operate. The life-improving products these distributors sell are designed for low-income customers

with limited ATP such that, in practice, λ is small and mh is close to ml. Thus, the refund cost in

strategy AR is likely higher than in strategy SR. This assumption also simplifies the description

of the distributor’s strategy map as a function of α, mh, and ml since it eliminates the edge case

where small changes in the values of α, mh and ml can make the distributor’s optimal pricing

strategy shift directly from A to SR, without first becoming AR or S.

With Assumption 2 in hand, we extend the result from Proposition 1 to heterogeneous ATPs.

Proposition 4 Under Assumption 2, providing a subsidy x≥ 0 can only improve the distributor’s

objective value, i.e.,
∂Π∗

D
∂x

≥ 0. In contrast, increasing the consumer education level θ might worsen

the distributor’s objective value, i.e.,
∂Π∗

D
∂θ

≤ 0 if

mh +x−w− (rα(mh)− y)− γ(mh − rα(mh))≥ 0. (5)

Additionally, for the distributor, x and θ are strategic complements under strategies A and S,

while they are strategic substitutes under strategies AR and SR.

Proposition 4 states a sufficient condition for an increase in information availability to reduce

the distributor’s objective. The condition is analogous to the one in Proposition 1: when the

contribution of a returned unit priced at mh to the distributor’s objective is high enough, increasing

information level’s might be prejudicial for the distributor. Proposition 4 also extends Proposition

1 by stating that strategies x and θ are strategic complements under pricing strategies that do not

offer refunds (A and S), while being substitutes when refunds are offered (AR and SR).



Calmon et al.: Operational Strategies for Distributing Durable Goods in the Base of the Pyramid
22 Article submitted to Manufacturing & Service Operations Management;

5.1. Allocation Problem and Free Returns with Heterogeneous ATP

When ml < mh, there are eight possible non-dominated allocation strategies in the Allocation

Problem which extend the strategies in Theorem 1 and can be split into two sets. In the first

set of strategies, the distributor uses pricing strategies A or AR, which target all customers. We

denote these allocation strategies by FA, MA, FAR, and MAR — the notation mirrors F,M,FR,

and MR from Theorem 1. In the second set of strategies, the distributor uses pricing strategies

S or SR, which skim the market and target only customers with high ATP mh. We denote these

allocation strategies by FS, MS, FSR, and MSR.

Theorem 2 Under Assumption 2, the distributor has eight non-dominated strategies in the Allo-

cation Problem:

• FS: invest the budget in improving product affordability by increasing x. If there is enough

budget to set x= vh−mh, invest the remaining budget in increasing θ. The distributor follows

pricing strategy S, targeting only informed customers with high ATP.

• MS: invest the budget in increasing the consumer education level θ. If there is enough budget to

set θ= 1, invest the remaining budget in increasing x. The distributor follows pricing strategy

S, targeting only informed customers with high ATP.

• FSR: invest the budget in improving product affordability by increasing x. If there is enough

budget to set x= vh−mh, the remaining budget is invested in increasing θ if vh−w−(rα(mh)−
y)− γ(mh − rα(mh))< 0, and not invested otherwise. The distributor follows pricing strategy

SR, targeting all customers with high ATP by accepting product returns.

• MSR: invest the budget as in strategy MS. However, the distributor follows pricing strategy

SR, targeting all customers with high ATP by accepting product returns.

• FA: invest the budget in improving product affordability by increasing x. If there is enough

budget to set x= vh−ml, the remaining budget is invested in increasing θ if ml− (1−γ)(vh−
ml)−λ/(1−λ)(mh−ml)−w> 0, and not invested otherwise. The distributor follows pricing

strategy A, targeting all informed customers.

• MA: invest the budget in increasing the consumer education level θ. If there is enough budget to

set θ= 1, invest the remaining budget in increasing x. The distributor follows pricing strategy

A, targeting all informed customers.

• FAR: invest the budget in improving product affordability by increasing x. If there is enough

budget to set x= vh−ml, the remaining budget is invested in increasing θ if vh−w−(rα(ml)−
y)− γ(ml − rα(ml))< 0, and not invested otherwise. The distributor follows pricing strategy

AR, targeting all customers by accepting product returns.

• MAR: invest the budget as in strategy MA. However, the distributor follows pricing strategy

AR, targeting all customers by accepting product returns.
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If the distributor “constrains” itself to follow either only skimming allocation strategies (FS,

MS, FSR or MSR) or non-skimming allocation strategies (FA, MA, FAR or MAR) then the

restricted strategy map as a function of mh and α (alternatively, ml and α) has an analogous

structure to the homogeneous ATP case where mh =ml.

We follow the analysis for the homogeneous ATP case and we define w̄S = βvh + (1 − β)y,

w̄A = βvh + (1− β)y − λ/(1− λ) ((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β)), c̄Sθ = (1−
β)λ(w− y), and c̄Aθ = (1−β)(w− y)−λ/(1−λ)(1−β)(ml − rα(ml)− (mh − rα(mh))).

The strategy maps for the case where the distributor constrains itself to either skimming alloca-

tion strategies or non-skimming strategies are derived in Proposition C.2 in the Appendix. Propo-

sition C.2 assumes w≤ w̄S and cθ ≤ c̄Sθ (resp. w≤ w̄A and cθ ≤ c̄Aθ ), when the distributor constrains

itself to skimming (resp. non-skimming) allocation strategies. Analogous to Propositions B.3 and

B.4, fewer strategies can be optimal when w> w̄S or cθ > c̄Sθ (resp. w> w̄A or cθ > c̄Aθ ) and we omit

the analysis of these cases since they are a special case of the analysis for Proposition C.2. Figure

7 in the Appendix illustrates Proposition C.2 by depicting the “constrained” strategy maps that

underlie the strategy map of Figure 5.

When w≤min(w̄S, w̄A) and cθ ≤min(c̄Sθ , c̄
A
θ ) the distributor’s full strategy map is a combination

of the constrained strategy maps from Proposition C.2, and shares many similar features with the

strategy map when mh =ml, recall Proposition B.2 and Figure 4. Namely, if α is high and mh and

ml are low, then either strategy FA or strategy FS dominate. Conversely, if α is low and mh and

ml are high, then either strategy MAR or MSR dominate.

A sample strategy map with heterogeneous ATP is depicted in Figure 5. The horizontal axis of

Figure 5 increases both ml and mh by setting the ATPs to ml+∆m and mh+∆m. Note the similar

disposition of the strategies in Figure 5 compared to the strategy map in Figure 4: an increase in

α can induce the distributor to choose strategies without refunds, while an increase in ∆m induces

the distributor to invest in increasing information instead of subsidies.

We now build on Proposition C.2 to extend Corollary 1 to the case where ml < mh and γ is

small, i.e., the distributor prioritizes profits (if γ = 0 the distributor is profit-maximizing).

Corollary 2 Under Assumption 2, if w ≤ min(w̄S, w̄A), cθ ≤ min(c̄Sθ , c̄
A
θ ) and γcθ ≤ (λ/(1 −

λ))2β(mh − ml), then there exists ATPs mFAS, mFS, m̂MAR, and m̂MSR where mFS,mFAS ≤
m̂MAR, m̂MSR ≤ vh, and functions aFS(ml,mh) and aMAR(ml) such that:

• Strategy FS is optimal if and only if ml ≤mFAS, mh ≤mFS and α≥ aFS(ml,mh).

• Strategy MAR is optimal if ml ≥ m̂MAR, mh ≥ m̂MSR and α≤ aMAR(ml).

Corollary 2 strengthens the intuition on how the optimal investment and pricing strategy in a

BOP context (where ml and mh are low and α is high) might differ from a non-BOP context (where
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Figure 5 Strategy map for the Allocation Problem as a function of ∆m and α. We assume vh = $10, w = $6,

θ0 = 0.2, mh = $7, ml = $6, λ= 0.4, b= $0.2, y = $3.25, β = 0.5, cθ = 0.33, and γ = 0. The horizontal

axis sets the ATPs to ml+∆m and mh+∆mh. Strategy FA is dominated by other strategies and does

not appear.

ml and mh are higher and α is low). In the BOP context, a profit-maximizing distributor invests

in improving affordability and skims the market (strategy FS). Conversely, in a non-BOP context,

a profit-maximizing distributor invests in increasing customer education level, offers returns, and

prices the product to target all customers (strategy MAR). Thus, in the BOP context, the het-

erogeneous ATP of customers might create an additional incentive for the distributor to skim the

market which does not occur in the non-BOP context.

We now characterize the consumer surplus attained in a BOP and non-BOP setting.

Proposition 5 Under Assumption 2, there exists a function acs
FS(mh,ml) such that, for any cus-

tomers’ risk aversion level α≥ 0 and customers’ ATPs ml, mh, w≤ml ≤mh ≤ vh,

• Strategy MAR induces the largest consumer surplus among all strategies from Theorem 2;

• Strategy FS induces the smallest consumer surplus among all strategies from Theorem 2 if

α≥ acs
FS(mh,ml) and strategy FA is individually rational for the distributor.

Proposition 5 highlights that the misalignment between consumer surplus and the distributor’s

profits in the BOP persists under heterogeneous ATPs. Given the market characteristics in the

BOP, where customers’ ATP is low and risk aversion is high, the most profitable allocation strategy

is FS, where the distributor must skim the market and invest in increasing x to have a positive

objective function. This strategy is also the strategy that leads to the lowest consumer surplus if

α is high enough since only a small fraction of the market purchases the product (the market size

is λβθFS, where θFS is the information level under strategy FS) and receive surplus vh −mh.

The total misalignment between the customer-surplus-maximizing strategy and the distributor’s

profit-maximizing strategy does not occur in a non-BOP context. From Corollary 2, when α is low
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and customer ATPs are high then strategy MAR, which from Proposition 5 induces the largest

consumer surplus, is the most profitable (despite the fact that some customers that return the

product might have negative surplus). Thus, Corollary 2 and Proposition 5 strengthen and extend

the main insight from Section 4.

Corollary 2 and Proposition 5 further indicate that, unlike the case where mh =ml, consumer

surplus can increase as ATP increases. If both mh and ml increase, the distributor can shift from a

skimming pricing strategy to a pricing strategy that targets all customers (for example from FS to

MAR) which can lead to a price reduction for customers and a net increase in consumer surplus.

Finally, we revisit Section 4.3 and examine the value of an operational commitment by the

distributor to offer free returns in resolving the misalignment between customer surplus and dis-

tributor profits in a BOP setting with heterogeneous ATPs. Recall that free returns eliminate the

downside of pricing strategies AR and SR where customers that purchase and return the product

for a partial refund have negative consumer surplus. The proposition below extends Proposition 3.

Proposition 6 Assume that the distributor commits to a free-returns policy, then the distributor

has four non-dominated strategies in the Allocation Problem:

• FSRf : invest the budget in improving product affordability by increasing x. If there is enough

budget to set x= vh−mh, the remaining budget is invested in increasing θ if vh−mh <w−y,

and not invested otherwise. The distributor follows pricing strategy FSR.

• MSRf : invest the budget in increasing the consumer education level. If there is enough budget

to set θ= 1, the remaining budget increases x. The distributor follows pricing strategy MSR.

• FARf : invest the budget in improving product affordability by increasing x. If there is enough

budget to set x= vh −ml, the remaining budget is invested in increasing θ if vh −ml <w− y,

and not invested otherwise. The distributor follows pricing strategy FAR.

• MARf : invest the budget as in strategy MSRf . The distributor follows pricing strategy MAR.

Moreover, the consumer surplus induced by strategies FSRf and MSRf is λβ(vh −mh), which

is larger than the consumer surplus induced by the allocation strategies FS, FSR, MS and MSR

from Theorem 2. The consumer surplus induced by strategies FARf and MARf is β(vh −ml),

which is larger than the consumer surplus induced by any allocation strategy from Theorem 2.

Thus, a commitment to free returns guarantees that no customers that purchase the product

have negative surplus in the BOP. Free returns also eliminate strategies FS and FA, which induce

a low consumer surplus. However, free returns do not remove the incentive for the distributor and

retailer to skim the market and target only customers with high ATP .

To mitigate price skimming, the distributor can commit to a maximum retail price (MRP).

A MRP is required in a few developing countries such as India — the Indian parliament passed
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the Consumer Goods Act in 2006 (The Indian Express 2017), which requires consumer goods

distributed and sold in India to have a MRP printed on good’s package. A distributor can use

such policy to print a price on the box that mitigates skimming, ensuring that low ATP customers

can afford the product. Such MRP commitment coupled with free returns can ensure that the

optimal strategies for the distributor are either FARf orMARf , and that there is no misalignment

between consumer surplus and the optimal allocation and pricing strategies.

6. Robustness Check: Model with Continuous Customer Types

We now illustrate that our main results and insights hold for a more sophisticated customer model

with continuous types. This model is analytically intractable and we study its equilibrium outcomes

through numerical simulations. We briefly describe each component of the continuous model.

There is a continuum of customer types defined by their product valuation. We assume valua-

tions are normally distributed as V ∼N(µ,σ2). As in the discrete model from Section 3, without

perfect information customers only learn their valuation if they purchase the product. Customers’

ATP are also normally distributed as M ∼ N(µm, σ
2
m). Customers’ ATP and valuations can be

correlated, where κ is the correlation between V and M . While we could assume other distribu-

tions of V and M , a normal distribution allows for a tractable model of information disclosure. For

a discussion on the microfoundations of information disclosure models with normally-distributed

customer valuations see Chu and Zhang (2011) and Johnson and Myatt (2006).

Customers do not know their true valuation before purchasing the product and form an estimate

of the product’s utility. Customers of type v receive a noisy signal v + η, where η ∼ N(0, σ2
η) is

random noise that models the quality of the information customers have about the product. The

distribution of signals is S = V + η, and we assume V and η to be independent. Customers form

a valuation estimate which has the distribution of the random variable V̂ = E[V |S]. Then, as in

Chu and Zhang (2011), it follows that

V̂ =E[V |S] = ρ2S+(1− ρ2)µ,

where ρ2 = σ2

σ2+σ2
η
∈ [0,1] is the correlation coefficient of V and S, and models the quality of the

information a customer receives. Note that V̂ is normally distributed and V̂ ∼N(µ,ρ2σ2). More-

over, V − V̂ ∼ N(0, (1− ρ2)σ2). Hence, if ρ = 0 customers have no information about their own

valuation, while if ρ= 1 they have perfect information.

All customers receive a baseline “low-quality” information signal Sl where the correlation coef-

ficient of V and Sl is ρ2l . The distributor can then invest in customer education campaigns that

provide a “high-quality” information signal Sh with correlation coefficient ρ2h (where ρh ≥ ρl) to a

fraction of the potential customers. The probability of a customer being reached by a customer
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education campaign is θ. Thus, a customer receives signal Sh with probability θ and signal Sl with

probability 1− θ. In short, as in the model of Section 3.1, θ models the campaign’s reach, while ρl

and ρh model the quality of the education campaign. We emphasize that allowing 0< ρl < ρh < 1,

generalizes the consumer education model from Section 3.1.

As in the discrete-valuation model, customers are risk averse and have the utility function

described in Section 3.1. We denote the utility estimate of a customer chosen at random by U .

Note that the expected utility and ATP are correlated if V and M are correlated. Given p, r, and

θ, the fractions of customers that purchase and return the product are

B(p, r, θ, ρh, ρl) :=E[1{U≥0,M≥p}|θ, ρh, ρl] (Prob. of buying the product),

R(p, r, θ, ρh, ρl) :=E[1{U≥0,M≥p,V <r}|θ, ρh, ρl] (Prob. of returning the product),

and the consumer surplus is

CS(p, r, θ, ρh, ρl) :=E[(V − p)1{U≥0,M≥p,V≥r}|θ, ρh, ρl]− (p− r)E[1{U≥0,M≥p,V <r}|θ, ρh, ρl]. (6)

The distributor’s Pricing Problem in the continuous model is the same as in Section 3. The

Allocation Problem in the continuous model is nearly identical to the problem stated in Section 3.

We again interpret x as an investment in product affordability, while an investment in increasing θ

represents an increase in the fraction of customers with a high-quality information signal. However,

we assume an upper bound x≤ x̄ where x̄ is an exogenous parameter (mirroring x≤ vh−p∗, which

does not directly translate to the continuous model due to the customers’ continuous valuation).

The bound on the subsidy x rules out edge cases where, in equilibrium, the distributor offers a

very steep discount and a very small fraction of customers purchase the product.

6.1. Numerical analysis

We now show that our main analytical results from Section 4 hold in the continuous model. In the

latter, µm, σm, and κ determine the distribution of customers’ ATP. We assume κ ≤ 0 since we

model products that would most benefit BOP customers, who might be under financial distress

and, as a result, have low ATP. We evaluate the probabilities of buying and returning the product

explicitly through numerical integration.

Pricing Problem. Figure 8 in Appendix D replicates the insight that increasing information

might decrease distributor profits if consumers have low ATP and low risk aversion (a similar effect

was observed in Figure 3). As before, when customers have low average ATP and risk aversion

(α= 0.01 in Figure 8a) increasing θ decreases distributor profits. Conversely, when customers are

very risk averse (α= 1 in Figure 8b), increasing θ always increases distributor profits. This behavior

is robust to different model parameters.
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Parameter Values Parameter Values

w 1 ρl Uniform(0.1, 0.45)
y Uniform(0,1) ρh Uniform(0.7, 0.95)
µ Uniform(0.7,1) θ0 Uniform(0.01, 0.5)
σ Uniform(0.5,1) cθ Uniform(0,2)
σm Uniform(0.1,1) b Uniform(0,1)
κ Uniform(-0.8,-0.2) x̄ µ−µm +σ+σm

Table 1 Distribution of parameters used for the Allocation Problem.

Avg. % of budget allocated to θ

µm = 0.75 µm = 1.25 µm = 1.75

α= 0.01 0.5% 4.5% 26%
α=1 1% 4.7% 28%
α=2 1.8% 4.9% 30%

Table 2 Avg. % of budget allocated to θ

Allocation Problem. We now examine how the optimal distributor’s budget allocation strat-

egy changes as a function of the customers’ average ATP µm and risk aversion level α, and discuss

their connection to the main results of Section 4.2, which are illustrated in Figure 4.

The simulation sets w= $1 and samples a set of initial market, product, and information param-

eters (µ,σ,σm, κ, y, cθ, ρl, ρh) drawn from the distributions described in Table 1. The values in Table

1 were chosen to generate problem instances that draw from a wide range of problem parameter

values relative to the value of w and from a wide variety of valuation and ATP distributions. We

assume that γ = 0, i.e. a profit-maximizing distributor. For each sample of parameters we solve

the allocation problem for different values of µm and α. When solving the allocation problem, we

calculate the fraction of consumers that purchase and return the product through Monte Carlo

integration. We sampled 10,000 sets of problem parameters and, for each set, we considered nine

combinations of µm and α. We solved a total of 90,000 instances of the allocation problem.

We first discuss the relative investment in θ and x. Table 2 describes the average fraction of the

budget invested in θ (the remainder budget is allocated to x) for different values of α and µm. The

results are consistent with Section 4.2: when comparing Figure 4 and Table 2 along their horizontal

axis, the relative investment in θ (resp. x) decreases (resp. increases) with the average ATP in both

of them. The distributor invests more in consumer education θ if the customers’ ATP is high.

Second, we discuss the prevalence of strategies that target uninformed customers via product

returns. Tables 3 and 4 describe, respectively, the average fraction of customers that receive the low-

information or high-information signal and purchase the product for different values of α and µm.

As before, the results are consistent with Section 4.2. When comparing Figure 4 and Tables 3 and 4

along their vertical axis, the fraction of purchases from customers that receive the low-information

(resp. high-information) signal decreases (resp. increases) with α. That is, the distributor should

induce the retailer to target uninformed consumers if the customers’ risk aversion level is low.
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Avg. % of low-info
customers that buy

µm = 0.75 µm = 1.25 µm = 1.75

α= 0.01 11% 16.5% 20.3%
α=1 10.6% 14.7% 17.8%
α=2 9.7% 13.5% 16.5%

Table 3 Avg. % of purchases from customers that

received the low-information signal

Avg. % of high-info
customers that buy

µm = 0.75 µm = 1.25 µm = 1.75

α= 0.01 5.4% 11.4% 18.3%
α=1 6.2% 13.4% 18.6%
α=2 7.1% 15.1% 18.8%

Table 4 Avg. % of purchases from customers that

received the high-information signal

% of instances where θCS ≥ θ∗

µm = 0.75 µm = 1.25 µm = 1.75

α= 0.01 98% 92% 75%
α=1 96% 86% 68%
α=2 93% 82% 61%

Table 5 % of sampled instances where maximizing

consumer surplus requires a higher θ

% of simulations where xCS ≥ x∗

µm = 0.75 µm = 1.25 µm = 1.75

α= 0.01 0.6% 2.4% 21%
α=1 0.5% 0.8% 17%
α=2 0.5% 0.6% 16%

Table 6 % of sampled instances where maximizing

consumer surplus requires a higher x

We now examine the resource allocation strategy that maximizes consumer surplus. For each

sample of instance parameters from the previous simulations, we solve the allocation problem with

consumer surplus as the distributor’s objective for different values of µm and α. Tables 5 and 6

summarize the fraction of consumer-surplus-maximizing allocations where the budget allocation

to x and θ is larger than in the profit-maximizing allocation. Specifically, let xCS and θCS be the

optimal solution to the allocation problem when the distributor maximizes consumer surplus, and

let x∗ and θ∗ be the profit-maximizing optimal allocation. Table 5 lists the fraction of instances

where θCS ≥ θ∗, while Table 6 lists the fraction of instances where xCS ≥ x∗.

Consistent with the discrete model, Tables 5 and 6 illustrate that strategies that invest more

in consumer education generally lead to a higher consumer surplus than finance-based strategies.

Additionally, Tables 5 and 6 confirm a strong tension between consumer surplus and profits in

the BOP, where α is high and µm is medium or low. That is, in the BOP the consumer-surplus

maximizing allocation almost always involves a higher investment in θ and a lower investment in

x than in the profit-maximizing allocation. Moreover, the tension between consumer surplus and

profits dissipates in non-BOP contexts with a higher average ATP.

7. Conclusions

We introduce a game-theoretic model to analyze the operations strategy of distributors of innova-

tive, life-improving, durable goods in supply chains that serve BOP customers. Our model incor-

porates two key features of BOP customers: risk aversion and customers with a lower ATP than

WTP. We use our model to analyze two operational optimization problems faced by BOP distribu-

tors. The first is a Pricing Problem, where the distributor decides the price and refund for returned
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Figure 6 Depiction of the distributor’s profit-maximizing allocation strategy as a function of customer ATP and

risk aversion. The green solid box highlights the strategy with highest consumer surplus and the red

dotted box highlights the strategy with lowest consumer surplus.

products it offers a retailer which, in turn, chooses a customer price and refund. The second is a

resource Allocation Problem, where the distributor allocates a given budget to (1) improve product

affordability (a financial lever), and (2) improve consumer education (an informational lever).

The distinction between risk-averse customers’ ATP and WTP has profound effects on the solu-

tions of these two problems and on supply chain equilibrium behavior. Figure 6 summarizes these

effects. The green solid box in Figure 6 highlights the equilibrium allocation strategy that induces

the highest consumer surplus, while the red dotted box highlights the strategy where consumer

surplus is lowest. Specifically, when customer risk aversion is high and customers’ ATPs are low

(which is common in the BOP), the distributor’s profit-maximizing allocation leads to the lowest

consumer surplus among non-dominated strategies. Conversely, when customers’ ATPs are high,

this tension between profits and consumer surplus disappears. Namely, we find a BOP-specific

misalignment between consumer surplus and profits.

We propose an operational commitment from the distributor to offering free returns as a poten-

tial solution to this misalignment. Such commitment ensures that no customer obtains a negative

surplus by trying out the product. We show that, when all customers have the same ATP, the

resulting consumer surplus is independent of profit maximization decisions and larger than any

equilibrium strategy without free returns, even in a BOP context. When customers have hetero-

geneous ATP, a commitment to free returns increases customer surplus but does not address the

incentives for the retailer to skim the market. Nevertheless, market skimming can be addressed by

a distributor’s commitment to charging a maximum retail price (which has become a legal require-

ment in India, for example). More generally, a commitment to free returns and a maximum retail

price can signal to socially-conscious investors that the distributor cares about consumer surplus.
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Many social enterprises spend significant resources measuring the social impact of their opera-

tions to provide “proof” that they are achieving their social goals. Our results indicate that, beyond

measuring impact, certain operational commitments (such as guaranteeing free returns and a max-

imum retail price) can also serve as “proof” of social-mindedness. These commitments constrain

the distributor’s decisions in a way that forces an alignment between social and financial objectives

throughout the supply chain. Exploring other operational commitments that force such alignment

can be valuable future research direction. Finally, there is a pressing need for more empirical

research and field experiments to validate stylized models of BOP supply chains. For example, a

field experiment to test the value of offering free returns on the adoption of durable goods in the

BOP could lead to new managerial practices and research questions.
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Appendix A: Challenges faced by BOP distributors: the case of Essmart

Profitably scaling the distribution of life-improving durable goods designed for BOP consumers is challenging

(Swaminathan 2007, Garrette and Karnani 2010). Although non-profit organizations, multinational compa-

nies, and start-ups have attempted to distribute these technologies at scale, no strategy has been completely

successful (Jue 2012). Non-profit organizations that have traditionally distributed technologies on a project-

by-project basis are limited in scale and financial independence. Multinational companies and start-ups alike

have tried increasing consumer awareness and access through massive door-to-door campaigns that combine

education and subsidized direct-sales to consumers (for an example, see Vidal 2013). However, managing

these massive campaigns with their large networks of sales agents is expensive and labor-intensive, and scal-

ing them is difficult due to high personnel turnover and the limited reach of the sales agents. Finally, all

types of distributors struggle with inappropriate product design, lack of long-term maintenance, and lack of

proper incentives, leading to commercial failures (see examples in Costello 2010, Simanis 2012).

Given this context, the motivation for our research and the main case study for this paper comes from

our collaboration with Essmart, a social enterprise that distributes innovative life-improving technologies to

BOP consumers in India. For a distributor like Essmart, the mixed objective includes both consumer surplus

and profitability.

Essmart was founded in 2012 and operates a hub-and-spoke distribution model that leverages India’s

extensive network of local retail shops. Each modular Essmart office, located in tier 3 towns in India, has four

Sales Executives who drive on routes of up to 100 kilometers per day via motorbike to build relationships

with peri-urban and rural retail shops, turning these shop owners into extensions of Essmart’s sales force

but with an established local presence and existing trusted buying relationships with customers. Essmart

currently operates 18 offices in Tamil Nadu, Karnataka, and Andhra Pradesh, India that have collectively

built a network of over 2,700 local retail shops.

Essmart’s innovative operations strategy, which allowed the company to achieve the unit economic prof-

itability of their offices in 2016, has three main components:

1. Distribution: Essmart partners with small “mom-and-pop” retail shops as points of sale and offers them

expedited product delivery, leveraging the fact that 85% of the annual retail spending in India occurs

through more than 12 million local retailers (Kohli and Bhagwati 2011). Essmart gives retailers a few

sample items and a catalogue that lists all of its products. With Essmart’s help, retailers select the

products from Essmart’s catalogue of 350+ SKUs that best fit their needs and shop profile, enabling a

diverse set of shop types to start selling Essmart products. When the retailer has a sale opportunity,

Essmart delivers the product within a few days. This “deliver-to-order” strategy effectively removes

the inventory risk and shelf space requirement from the retailer.

2. Consumer Education (marketing): Essmart Sales Executives run product demonstrations at local shops

and markets to educate consumers on product features and the needs they address, as well as refer

consumers to local retailers if they are interested in purchasing a product. Although the demonstra-

tions have less reach than door-to-door campaigns, they are significantly less labour intensive. The

demonstrations create awareness of Essmart’s products and seek to build trust between Essmart and

consumers, as well as between Essmart and their retailers, who are involved in the demonstrations.
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3. Consumer Guarantees: Essmart offers consumers a range of guarantees, including the opportunity to

return products and facilitating the service of faulty products that have manufacturer warranties. This

is the most innovative component of their operations strategy, since most companies and organizations

that distribute life-improving technologies in the BOP do not offer customers or retailers any form of

protection or recourse.

Appendix B: Proofs and Additional Results from Section 4

B.1. Additional Results from Section 4.1

Recall that rα(p) is the minimum refund the retailer must offer to uninformed consumers such that they

purchase the product at an effective price p, and pα(r) is the WTP of uninformed consumers given a refund

r offered by the retailer.

We now argue that rα(p), given in Equation 3, is invertible for any p such that rα(p)> 0, thus pα(r) = r−1
α (r)

is well-defined. Indeed, the derivative r′α(p) for any p such that rα(p)> 0 is

r′α(p) = 1+
β

eα(vh−p+x) −β
> 0, (7)

where the inequality follows since eα(vh−p+x) ≥ 1 for p∈ [0, vh +x] and 0<β < 1. Then, rα(p) is invertible.

We are now ready to characterize the optimal solution to the Pricing Problem.

Proposition B.1 Consider any consumer education level θ ∈ [0,1), ATP m∈ [w,vh], and subsidy x∈ [0, vh−
m]. Then, the distributor’s optimal objective is

Π∗
D(x, θ) =max

{
Πa

D(x, θ),Π
b
D(x, θ)

}
. (8)

Where Πa
D(x, θ) and Πb

D(x, θ) each correspond to the distributor’s profits in a non-dominated strategy.

Specifically, strategies (a) and (b) are characterized by:

(a) Target only informed customers without product returns. The customer price is pa =m+x and refund

is ra = 0. The retailer’s price and refund are ca =m+x and za = 0, respectively. The customer surplus

is CSa = (vh −m)θβ. The retailer’s profit is Πa
R = 0 while the distributor’s profit is Πa

D(x, θ) = (m+

x−w)θβ+ γCSa.

(b) Target both informed and uninformed customers with product returns. The customer price is pb =m+x

and the refund is rb = rα(m) = max
(
0,m− 1

α
ln
(

1−βe−α(vh−m)

1−β

))
. The equilibrium retailer refund is

zb = rα(m) and the retailer price cb is

cb =m+x+
(1− θ)(1−β)θβ

θβ+(1− θ)
(zb − z̄). (9)

The consumer surplus is

CSb = (vh −m)β− (m− rα(m))(1− θ)(1−β),

the retailer’s profit is Πb
R = 0, and the distributor’s profit is

Πb
D(x, θ) = (m+x−w)β+(1−β)(m+x− rα(m)−w+ y)(1− θ)+ γCSb.
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Strategy (b) is preferred by the distributor over strategy (a) if and only if

m+x−w− (1−β)(rα(m)− y)+ γ(β(vh −m)− (1−β)(m− rα(m)))≥ 0. (10)

Proof. First, we analyze the retailer’s pricing problem and show that the optimal nominal price to

consumers is p∗ =m+x and the optimal refund is such that r∗ ∈ {0, rα(m)}. Note that the expected fraction of

customers who purchase the product is B(p, r, θ) =
(
θβ+(1− θ)1{r≥rα(p−x)}

)
1{p−x≤m}. Since both indicator

functions are decreasing in p (cf. Equation 7), it follows that, for a given r, the optimal retailer’s price p∗ is

such that p∗ ∈ {m+x,pα(r)+x}.
Then, if p∗ =m+x the retailer’s profit function is

ΠR (m+x, r) = (m+x− c)
(
θβ+(1− θ)1{r≥rα(m)}

)
− (r− z)(1− θ)(1−β)1{r≥rα(m)}.

The profit function above is constant for r < rα(m), has an increasing or decreasing step at r= rα(m), and

is linear decreasing for r > rα(m). Therefore, r∗ ∈ {0, rα(m)} when p∗ =m+x.

Conversely, if p∗ = pα(r)+x the retailer’s profit function is

ΠR (pα(r)+x, r) = (pα(r)+x− c) (θβ+(1− θ))1{pα(r)≤m} − (r− z)(1− θ)(1−β)1{pα(r)≤m}.

The profit function above is zero if pα(r)>m since customers cannot afford the product. When pα(r)≤m

(equivalently when r ≤ rα(m)) the profit function is increasing in r. To show this, first note that when

r≤ rα(m) we have

∂ΠR (pα(r)+x, r)

∂r
= p′

α(r) (θβ+(1− θ))− (1− θ)(1−β) =
θβ+(1− θ)

r′α(pα(r))
− (1− θ)(1−β).

where the second equality comes from the fact that pα = r−1
α . Then, from Equation 7, for any p∈ [0, vh+x],

we have that

r′α(p)≤ 1+
β

1−β
≤ 1+

β

(1− θ)(1−β)
=

θβ+(1− θ)

(1− θ)(1−β)
.

The first inequality comes from noting that r′α(p), given in Equation 7, is decreasing in p for p ∈ [0, vh + x]

and that r′α(vh + x) = 1+ β

1−β
. It follows that ∂ΠR(pα(r)+x,r)

∂r
≥ 0, thus r∗ = rα(m) when p∗ = pα(r) + x, and

p∗ =m+x in this case as well.

Hence, we conclude that p∗ = m+ x and r∗ ∈ {0, rα(m)}, fully characterizing the potential equilibrium

behaviors of the retailer. With the retailer’s equilibrium behavior in hand, we now characterize the distrib-

utor’s equilibrium pricing and refund strategies.

Assume first that the distributor is interested in inducing the retailer to target informed consumers with

high valuation, i.e. set p∗ =m+x and r∗ = 0. In this case, the distributor’s problem can be written as

max
c,z≥0

(c−w)θβ+ γ(vh −m)θβ

s.t. (m+x− c)θβ ≥ (m+x− c) (θβ+(1− θ))− (rα(m)− z)(1− θ)(1−β) (IC)

(m+x− c)θβ ≥ 0. (IR)

Note that the (IC) constraint above implies that the retailer sets p∗ =m+ x and r∗ = 0. The objective is

increasing in c and independent of z, with an upper bound c≤m+ x given by the (IR) constraint as long
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as z ≤ rα(m), otherwise the problem is infeasible. Hence, in particular c∗ = m+ x and z∗ = 0, leading to

strategy (a) in the statement of the proposition.

Now assume that the distributor is interested in inducing the retailer to target uninformed consumers too,

i.e. set p∗ =m+x and r∗ = rα(m). In this case, the distributor’s problem can be written as

max
c,z≥0

(c−w) (θβ+(1− θ))− (z− y)(1− θ)(1−β)+ γ((vh −m)β− (m− rα(m))(1− θ)(1−β))

s.t. (m+x− c) (θβ+(1− θ))− (rα(m)− z)(1− θ)(1−β)≥ (m+x− c)θβ (IC)

(m+x− c) (θβ+(1− θ))− (rα(m)− z)(1− θ)(1−β)≥ 0. (IR)

The objective is increasing in c and decreasing in z, leading to c∗ =m+ x and z∗ = rα(m) where both the

(IR) and (IC) constraints are tight. This corresponds to strategy (b) in the statement of the proposition. A

direct comparison between Πb
D and Πa

D shows that Πb
D(x, θ)≥Πa

D(x, θ) if and only if

m+x−w− (1−β)(rα(m)− y)+ γ(β(vh −m)− (1−β)(m− rα(m)))≥ 0,

completing the proof. □

Note that in Equation 10 the term m + x − w is the expected distributor’s margin on each sale, (1 −
β)(rα(m)−y) is the expected cost of a product return, and β(vh−m)− (1−β)(m−rα(m)) is the uninformed

consumer’s expected surplus.

B.2. Proof of Proposition 1

Proof. We first show that the distributor’s objective function is increasing in x. Note that

∂Πa
D

∂x
= θβ > 0, and

∂Πb
D

∂x
= β+(1− θ)(1−β)> 0.

Hence,
∂Π∗

D

∂x
> 0.

In contrast, the distributor’s objective function is not always increasing in θ. To prove this, first note that
∂Πa

D

∂θ
= (γvh +(1− γ)m+x−w)β > 0 and

∂Πb
D

∂θ
=−(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
+(1−β)(w− y−x).

Hence,
∂Πb

D

∂θ
≤ 0 if and only if

y+(1− γ)
1

α
ln

(
1−βe−α(vh−m)

1−β

)
+x−w≥ 0.

Moreover, recall from Proposition B.1 that Π∗
D =Πb

D if and only if

m+x−w− (1−β)(rα(m)− y)+ γ(β(vh −m)− (1−β)(m− rα(m)))≥ 0,

or equivalently

y+(1− γ)
1

α
ln

(
1−βe−α(vh−m)

1−β

)
+x−w+

β

1−β
(γ(vh −m)+m+x−w)≥ 0. (11)

By noting that (γ(vh −m) +m + x − w) ≥ 0 we conclude that
∂Πb

D

∂θ
≤ 0 implies Π∗

D = Πb
D. Therefore,

∂Π∗
D

∂θ
< 0 if and only if the inequality (11) holds.

Finally,
∂2Πa

D

∂θ∂x
= β > 0, and

∂2Πb
D

∂θ∂x
=−(1−β)< 0. This concludes the proof. □
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B.3. Proof of Theorem 1

Proof. Let (x∗, θ∗) be the optimal solution of the distributor’s allocation problem. We analyze strategies

(a) and (b) from Proposition B.1 separately.

F and M : Assume first that Π∗
D(x

∗, θ∗) =Πa
D(x

∗, θ∗).

Since
∂Πa

D

∂x
= θβ > 0 and

∂Πa
D

∂θ
= (γvh + (1− γ)m+ x− w)β > 0 then from Assumption 1 it follows that

the optimal solution to the resource allocation problem exhausts the budget, i.e., cθ(θ
∗ − θ0) + θ∗βx∗ = b,

or equivalently x∗(θ) = b−cθ(θ−θ0)

θβ
. By replacing x∗(θ) in the resource allocation problem, it simplifies to the

following one-variable optimization problem

max
θ

Πa
D(θ) = (γvh +(1− γ)m−w)θβ+ b− cθ(θ− θ0)

s.t. θ ∈ [θ0,1],
b− cθ(θ− θ0)

θβ
∈ [0, vh −m].

(12)

Let θa be the optimal solution of problem (12), and xa = b−cθ(θ
a−θ0)

θaβ
. The objective function of problem (12),

Πa
D(θ), is linear. Moreover,

dΠa
D(θ)

dθ
= (γvh +(1− γ)m−w)β− cθ. (13)

Hence, θa must be equal to one of its upper or lower bound, i.e.,

θa ∈
{
θ0 +

(b− θ0β(vh −m))+

cθ +β(vh −m)
,min

(
1, θ0 +

b

cθ

)}
,

and thus

xa ∈

min

(
vh −m,

b

θ0β

)
,
(b− cθ(1− θ0))

+

min
(
1, θ0 +

b
cθ

)
β

 .

Namely, when following strategy (a) in Proposition B.1 the distributor either invests the budget in increasing

the consumers’ maximum ability to pay first, and then the consumer education level only if there is budget

available (strategy F ), or invests the budget in increasing the consumer education level first, and then the

consumers’ maximum ability to pay only if there is budget available (strategy M).

Specifically,

θF = θ0 +
(b− θ0β(vh −m))+

cθ +β(vh −m)
, xF =min

(
vh −m,

b

θ0β

)
,

and

ΠF
D =

(
γvh +(1− γ)m+min

(
vh −m,

b

θ0β

)
−w

)(
θ0 +

(b− θ0β(vh −m))+

cθ +β(vh −m)

)
β

Similarly,

θM =min

(
1, θ0 +

b

cθ

)
, xM =

(b− cθ(1− θ0))
+

β
,

and

ΠM
D = (γvh +(1− γ)m−w)min

(
1, θ0 +

b

cθ

)
β+(b− cθ(1− θ0))

+

FR and MR: Assume now that Π∗
D(x

∗, θ∗) =Πb
D(x

∗, θ∗).

Since
∂Πb

D

∂x
= β+(1−θ)(1−β)> 0, then from Assumption 1 it follows that the optimal subsidy must either

be equal to its upper bound or the budget constraint must be tight, i.e., x∗(θ) =min
(
vh −m, b−cθ(θ−θ0)

β+(1−θ)(1−β)

)
.
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By replacing x∗(θ) in the resource allocation problem, it simplifies to the following one-variable optimization

problem

max
θ

Πb
D(θ) = (γvh +(1− γ)m−w)β+min

(
(vh −m)(β+(1− θ)(1−β)), b− cθ(θ− θ0)

)
+

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β) (w− y)

)
(1− θ)

s.t. θ ∈ [θ0,1], cθ(θ− θ0)≤ b.

(14)

Let θb be the optimal solution of problem (14) and xb = x∗(θb). Since the minimum of two linear functions

is concave, then the objective function of problem (14), Πb
D(θ), is piece-wise linear concave with at most two

pieces. Moreover, note that

dΠb
D(θ)

dθ
=−

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β) (w− y)

)
− cθ − ((vh −m)(1−β)− cθ)1{cθ(θ−θ0)+(vh−m)(β+(1−θ)(1−β))≤b}. (15)

Hence, we conclude that either θb is equal to its upper bound, i.e., θb = min
(
1, θ0 +

b
cθ

)
, or alterna-

tively θb must be equal to one of its lower bound or the kink between the linear pieces of Πb
D(θ), i.e., θ

b ∈{
θ0,

b+cθθ0−(vh−m)

cθ−(vh−m)(1−β)

}
. Namely, when following strategy (b) in Proposition B.1 the distributor either invests

the budget in increasing the consumer education level first, and then the consumers’ maximum ability to pay

only if there is budget available (strategy MR), or invests the budget in increasing the consumers’ maximum

ability to pay first, and then in increasing the consumer education level only if it is beneficial and there is

budget available (strategy FR).

Specifically,

θMR =min

(
1, θ0 +

b

cθ

)
, xMR =

(b− cθ(1− θ0))
+

β
,

and
ΠMR

D = (γvh +(1− γ)m−w)β+(b− cθ(1− θ0))
+

+

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β)(w− y)

)(
1− θ0 −

b

cθ

)+

.
(16)

In order to write θFR in closed form there are two possible cases depending on whether Πb
D(θ) has a kink

in the feasible interval of problem (14),
[
θ0,min

(
1, θ0 +

b
cθ

)]
. We analyze these cases next.

First assume cθ ≤ (vh −m)(1− β), then from Assumption 1 it follows that Πb
D(θ) does not have a kink

in the feasible interval of problem (14). Specifically, if cθ < (vh −m)(1− β) then b+cθθ0−(vh−m)

cθ−(vh−m)(1−β)
≥ 1, and if

cθ = (vh −m)(1−β) then b− cθ(θ− θ0)≤ (vh −m)(β+(1− θ)(1−β)) for all θ. Namely, at θ= θ0 there is no

leftover budget after investing in x and θFR = θ0 in this sub-case.

Now assume cθ > (vh−m)(1−β), then from Assumption 1 it follows that Πb
D(θ) has a kink in the feasible

interval of problem (14) if and only if b+cθθ0−(vh−m)

cθ−(vh−m)(1−β)
≥ θ0, or equivalently (vh −m)(β+(1− θ0)(1−β))≤ b.

Moreover, from Equation 15 it follows that the kink will attain an objective value at least as large as the

solution θ= θ0 if and only if y≤ yθ, where

yθ ≡w− (1− γ)
1

α
ln

(
1−βe−α(vh−m)

1−β

)
− (vh −m).
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To simplify the notation, we define the function 1
x++ :=

{
0 if x≤ 0
1
x

if x> 0.
Then,

θFR = θ0 +

(
b− (vh −m)(β+(1− θ0)(1−β))

)+(
cθ − (vh −m)(1−β)

)++ 1{y≤yθ},

xFR =min

(
vh −m,

b

β+(1− θ0)(1−β)

)
,

and

ΠFR
D = (γvh +(1− γ)m−w)β+min((vh −m)(β+(1− θ0)(1−β)), b)

+

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β) (w− y)

)
(1− θ0)

+

(
w− y− 1− γ

α
ln

(
1−βe−α(vh−m)

1−β

)
− (vh −m)

)+

(1−β)

(
b− (vh −m)(β+(1− θ0)(1−β))

)+(
cθ − (vh −m)(1−β)

)++ .

(17)

To conclude, note that the optimal objective value of the resource allocation problem is

ΠOPT
D =max(ΠF

D,Π
M
D ,ΠFR

D ,ΠMR
D ).

□

B.4. Strategy Map with Homogeneous ATP

To characterize the strategy map of the Allocation Problem in Proposition B.2 we use three auxiliary

functions a1(m), a2(m), and a3(m), as well as three auxiliary thresholds on the consumers ATP mF , mMR

and m̄MR, which are defined in its proof.

Proposition B.2 Assume w≤ βvh+(1−β)y and cθ ≤ (1−β)(w−y). Let F , M , FR, and MR be the invest-

ment strategies from Theorem 1. Then, there exist ATPs mF , mMR, and m̄MR where w≤mF ≤mMR, m̄MR ≤
vh and functions a1(m), a2(m), and a3(m), such that for a given customer risk aversion parameter α and

base ATP m,

• Strategy F is optimal if α is large enough and m is smaller than mF . Specifically,

ΠF
D ≥max(ΠM

D ,ΠFR
D ,ΠMR

D ) if and only if m≤mF and α≥ a3(m).

• Strategy M is optimal if α is large enough and m is larger than mF and smaller than m̄MR. Specifically,

ΠM
D ≥max(ΠF

D,Π
FR
D ,ΠMR

D ) if and only if mF ≤m≤ m̄MR and α≥ a2(m).

• Strategy FR is optimal if α and m are small enough. Specifically,

ΠFR
D ≥max(ΠF

D,Π
M
D ,ΠMR

D ) if and only if m≤mMR and α≤min(a1(m), a3(m)).

• Strategy MR is optimal if m is larger than mF and α is larger than a1(m) and smaller than a2(m).

Specifically,

ΠMR
D ≥max(ΠF

D,Π
MF
D ,ΠFR

D ) if and only if mF ≤m and a1(m)≤ α≤ a2(m),

where a1(m)≤ a2(m) if and only if m≥mF . Also, a1(m) = 0 for all mMR ≤m and a2(m) =∞ for all

m̄MR ≤m.
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Before stating the proof of Proposition B.2, we provide intuition on the proof’s structure and define

auxiliary functions.

Our goal is to describe the optimal allocation strategy as a function of (α,m). For such, we write the profit

of each strategy as a function of (α,m). The profits under strategies F,M,FR, and MR are, respectively

ΠF
D(α,m),ΠM

D (α,m),ΠFR
D (α,m), and ΠMR

D (α,m).

We will define a threshold, mF , and functions a1(m), a2(m), and a3(m) where a1(m
F ) = a2(m

F ) = a3(m
F ).

We will then establish the following properties:

• Property 1: ΠF
D(α,m)≥ΠM

D (α,m) if and only if m≤mF ;

• Property 2: ΠMR
D (α,m)≥ΠFR

D (α,m) if and only if α≥ a1(m);

• Property 3: ΠM
D (α,m)≥ΠMR

D (α,m) if and only if α≥ a2(m);

• Property 4: ΠF
D(α,m)≥ΠFR

D (α,m) if and only if α≥ a3(m);

• Property 5: a1(m)≤ a2(m) if and only if m≥mF . Moreover, a2(m) =∞ for all m≥ m̄MR and a1(m) = 0

for all m≥mMR, where w≤mF ≤mMR, m̄MR ≤ vh

Note that Property 5 combined with the first four properties establishes the following additional properties:

• Property 6: when m≤mF then ΠMR
D (α,m)≤max(ΠFR

D (α,m),ΠM
D (α,m));

• Property 7: when m≥mF then α≥ a2(m) implies ΠFR
D (α,m)≤ΠM

D (α,m);

• Property 8: when m≤mF then α≤ α3(m) implies ΠFR
D (α,m)≥ΠM

D (α,m);

• Property 9: when m≥mF then α≤ α1(m) implies ΠFR
D (α,m)≥ΠM

D (α,m).

The nine properties above completely characterize the strategy map in the statement of Proposition B.2.

Namely,

• F is optimal if and only if m≤mF and α≥ a3(m) (combine Properties 1, 4, and 6);

• M is optimal if and only if mF ≤m≤ m̄MR and α≥ α2(m) (combine Properties 1, 3, 5, and 7);

• FR is optimal if and only if m≤mMR and α≤min(a1(m), a3(m)) (combine Properties 2, 4, 5, 8, 9);

• MR is optimal if and only if mF ≤ m and a1(m) ≤ α ≤ a2(m), where a1(m) ≤ a2(m) if and only if

m≥mF , a1(m) = 0 for all mMR ≤m, and a1(m) =∞ for all m̄MR ≤m. (combine Properties 1, 2, 3, 5).

We now prove each property.

Proof of Property 1. Recall the Linear Program in (12) for deciding between strategies M and F . From

Equation 13, we have that ΠF
D ≥ΠM

D if and only if (γvh +(1− γ)m−w)β ≤ cθ. Thus, m
F =

cθ
β

+w−γvh

(1−γ)
.

Proof of Property 2. Recall the optimization problem in (14). From the concavity of Πb
D(θ) it follows that

it is sufficient to check the derivative
dΠb

D(θ)

dθ
at θ= 1, i.e.,

ΠMR
D ≥ΠFR

D ⇐⇒ dΠb
D(1)

dθ
≥ 0.

We have

dΠb
D(1)

dθ
=−

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β) (w− y)

)
− cθ − ((vh −m)(1−β)− cθ)1{cθ(1−θ0)+(vh−m)β≤b}

=− (1− γ)
1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
+(1−β)(w− y)− cθ,
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where the second equality follows from Assumption 1. Thus,

dΠb
D(1)

dθ
≥ 0 ⇐⇒ 1− γ

α
ln

(
1−βe−α(vh−m)

1−β

)
≤ g1(m),

where g1(m) = w − y − cθ
(1−β)

. First assume that γ ≤ 1, note that then the term 1−γ

α
ln
(

1−βe−α(vh−m)

1−β

)
is

monotonically decreasing in α and has range
[
0, (1−γ)β(vh−m)

1−β

]
. If 0≤ g1(m)≤ (1−γ)β(vh−m)

1−β
, then there exists

α̂1 that satisfies
1− γ

α̂1

ln

(
1−βe−α̂1(vh−m)

1−β

)
= g1(m).

Then, we define a1(m) as

a1(m) =


∞, if g1(m)< 0

α̂1, if 0≤ g1(m)≤ (1−γ)β(vh−m)

1−β

0, if (1−γ)β(vh−m)

1−β
< g1(m).

Since cθ ≤ (1− β)(w − y) by assumption, then g1(m) ≥ 0 thus a1(m) <∞. The definition of a1(m) when

γ > 1 is analogous and is skipped for the sake of brevity. This establishes Property 2.

Proof of Property 3. To compare strategy M and MR, we directly compare their distributor’s value. From

the proof of Theorem 1:

ΠMR
D (α,m) =(γvh +(1− γ)m−w)β+(b− cθ(1− θ0))

+

+

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β)(w− y)

)(
1− θ0 −

b

cθ

)+

,

and

ΠM
D (α,m) = (γvh +(1− γ)m−w)min

(
1, θ0 +

b

cθ

)
β+(b− cθ(1− θ0))

+.

Thus, ΠM
D (α,m)≥ΠMR

D (α,m) if and only if

−(γvh+(1−γ)m−w)β

(
1− θ0 −

b

cθ

)+

≥
(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β)(w− y)

)(
1− θ0 −

b

cθ

)+

.

If
(
1− θ0 − b

cθ

)+
= 0, then the budget is sufficient to set θ = 1 and the profits of policy M and MR are

the same since all customers are informed and there are no returns. Thus we consider the case where(
1− θ0 − b

cθ

)+
> 0. In such case, the inequality above becomes

−(γvh +(1− γ)m−w)β ≥ (1− γ)
1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β)(w− y).

Rearranging the terms yields the relationship,

ΠM
D (α,m)≥ΠMR

D (α,m) ⇐⇒ 1− γ

α
ln

(
1−βe−α(vh−m)

1−β

)
≤ g2(m).

where g2(m) = w − y − (γvh + (1 − γ)m − w) β

1−β
. As in Property 2, first assume that γ ≤ 1, note that

then the term 1−γ

α
ln
(

1−βe−α(vh−m)

1−β

)
is monotonically decreasing in α and has range

[
0, (1−γ)β(vh−m)

1−β

]
. If

0≤ g2(m)≤ (1−γ)β(vh−m)

1−β
, then there exists a α̂2 that satisfies

1− γ

α̂2

ln

(
1−βe−α̂2(vh−m)

1−β

)
= g2(m).
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Then, we define a2(m) as

a2(m) =


∞, if g2(m)< 0

α̂2, if 0≤ g2(m)≤ (1−γ)β(vh−m)

1−β

0, if (1−γ)β(vh−m)

1−β
< g2(m).

Since w≤ βvh +(1− β)y by assumption, then g2(m)≤ (1− γ)β(vh −m)/(1− β) thus a2(m)> 0. As before,

the definition of a2(m) when γ > 1 is analogous and is skipped for the sake of brevity. This establishes

Property 3.

Proof of Property 4. The proof of this property is analogous to the proof of Properties 2 and 3. We denote

the information level in strategy F and FR by θF and θFR, respectively. We directly compare the distributor’s

value in F and FR. Hence,

ΠF
D(α,m)≥ΠFR

D (α,m)

⇐⇒ (γvh +(1− γ)m−w)θFβ+ b− cθ(θ
F − θ0)≥

(γvh +(1− γ)m−w)β+min
(
(vh −m)(β+(1− θFR)(1−β)), b− cθ(θ

FR − θ0)
)

+

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β) (w− y)

)
(1− θFR)

⇐⇒ (γvh +(1− γ)m−w)θFβ+ b− cθ(θ
F − θ0)≥

(γvh +(1− γ)m−w)θFRβ+ b− cθ(θ
FR − θ0)−

(
b− cθ(θ

FR − θ0)− (vh −m)(β+(1− θFR)(1−β))
)+

+

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β)(w− y)+ (γvh +(1− γ)m−w)β

)
(1− θFR)

⇐⇒ ((γvh +(1− γ)m−w)β− cθ)(θ
F − θFR)

+
(
b− (vh −m)(β+(1− θ0)(1−β))− (cθ − (vh −m)(1−β))(θFR − θ0)

)+ ≥(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β)(w− y)+ (γvh +(1− γ)m−w)β

)
(1− θFR)

⇐⇒ ((γvh +(1− γ)m−w)β− cθ)(θ
F − θFR)

+
(
b− (vh −m)(β+(1− θ0)(1−β))−

(
b− (vh −m)(β+(1− θ0)(1−β))

)+
1{cθ≥(vh−m)(1−β)}1{y≤yθ}

)+ ≥(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β)(w− y)+ (γvh +(1− γ)m−w)β

)
(1− θFR)

⇐⇒ 1− γ

α
ln

(
1−βe−α(vh−m)

1−β

)
≤ g3(m),

where the first equivalence is by definition of ΠF
D and ΠFR

D , the second and third equivalences follow by

rearranging terms, the fourth equivalence follows from the definition of θFR, and the last equivalence follows

by defining g3(m) as

g3(m) =
1

(1−β)

[
(1−β)(w− y)− (γvh +(1− γ)m−w)β+

(
(γvh +(1− γ)m−w)β− cθ

)(θF − θFR

1− θFR

)
+
(
b− (vh −m)(β+(1− θ0)(1−β))

)+ 1−1{y≤yθ,cθ≥(vh−m)(1−β)}
1− θFR

]
,

where yθ =w− 1−γ

α
ln
(

1−βe−α(vh−m)

1−β

)
− (vh −m). Similar to the previous two properties, assume first that

γ ≤ 1, if 0≤ g3(m)≤ (1−γ)β(vh−m)

1−β
, then there exists a α̂3 that satisfies

1− γ

α̂3

ln

(
1−βe−α̂3(vh−m)

1−β

)
= g3(m).
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We then define a3 as

a3(m) =


∞, if g3(m)≤ 0

α̂3, if 0≤ g3(m)≤ (1−γ)β(vh−m)

1−β

0, if (1−γ)β(vh−m)

1−β
≤ g3(m).

Again, the definition of a3(m) when γ > 1 is analogous and is skipped for the sake of brevity. This establishes

Property 4.

Proof of Property 5. We first show that a1(m
F ) = a2(m

F ). By definition mF satisfies (γvh +(1− γ)mF −
w)β = cθ. Therefore,

g2(m
F ) =w− y− (γvh +(1− γ)mF −w)

β

1−β
=w− y− cθ

(1−β)
= g1(m

F ).

We now show that a1(m)≥ a2(m) if and only if m≤mF . Since (γvh +(1− γ)m−w)β ≥ cθ if and only if

m≥mF , then g1(m)≥ g2(m) if and only if m≥mF , hence a1(m)≤ a2(m) if and only if m≥mF .

We now prove the second statement in Property 5. LetmMR = vh− (1−β)(w−y)−cθ
(1−γ)β

. Then, from the definition

of a1(m) in Property 2 we have that if m ≥ mMR then a1(m) = 0, i.e., strategy MR dominates strategy

FR for all α≥ a1(m) = 0. Moreover, the first statement in Property 5 then implies mMR ≥mF while cθ ≤
(1− β)(w− y) implies mMR ≤ vh. Furthermore, Property 1 then also implies that strategy MR dominates

strategy F for all α≥ a1(m) = 0 and m≥mF .

Similarly, let m̄MR = vh − βvh+(1−β)y−w

(1−γ)β
. Then, from the definition of a2(m) in Property 3 we have that if

m≥ m̄MR then a2(m) =∞, i.e., strategy MR dominates strategy M for all α≤ a2(m) =∞. Moreover, the

first statement in Property 5 implies m̄MR ≥mF , while w ≤ βvh + (1− β)y implies m̄MR ≤ vh, establishing

Property 5.

Hence, we have shown Properties 1 to 5, completing the proof of Proposition B.2. □

B.5. Strategy Map when w>βvh +(1−β)y with Homogeneous ATP

The strategy map when β(vh − w) + (1− β)(y − w) < 0 is simpler since only strategies F and M can be

optimal, as shown in the following proposition.

Proposition B.3 Assume β(vh − w) + (1 − β)(y − w) < 0 then the distributor’s optimal strategy in the

resource allocation problem can be characterized as follows. Strategies MR and FR in Theorem 1 are always

dominated. Moreover, consider the threshold mF on the customers’ base ability to pay from Proposition B.2,

then:

• Strategy F in Theorem 1 is optimal if and only if the customers’ base ability to pay m is smaller than

the threshold mF . Specifically,

max(ΠM
D ,ΠFR

D ,ΠMR
D )≤ΠF

D if and only if m≤mF .

• Strategy M in Theorem 1 is optimal if the customers’ base ability to pay m is larger than the threshold

mF . Specifically,

max(ΠF
D,Π

FR
D ,ΠMR

D )≤ΠM
D if and only if m≥mF .
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Proof. We build on the proof of Proposition B.2. Specifically, recall the threshold mF and the functions

a1(m), a2(m), and a3(m). Moreover, recall Properties 1 to 5.

We show that β(vh −w) + (1− β)(y−w)< 0, or equivalently w > βvh + (1− β)y, implies that strategies

MR and FR are dominated for any m and α≥ 0.

First, we show that w>βvh +(1−β)y implies ΠM
D (α,m)≥ΠMR

D (α,m) for any m and α≥ 0. We have

0>βvh +(1−β)y−w

= (γvh +(1− γ)m−w)β+(1− γ)β(vh −m)− (1−β)(w− y)

= (1− γ)β(vh −m)− (1−β)g2(m).

Hence, g2(m)> (1− γ)β(vh −m)/(1− β). Thus, by definition a2(m) = 0 for any m and Property 3 implies

ΠM
D (α,m)≥ΠMR

D (α,m) for any m and α≥ 0.

Second, we show that w > βvh + (1− β)y implies ΠMR
D (α,m) ≥ ΠFR

D (α,m) for any m ≥mF and α ≥ 0.

Indeed, we have already shown that w>βvh+(1−β)y implies a2(m) = 0 for any m, then Property 5 implies

a1(m) = 0 for any m≥mF , and from Property 2 we conclude ΠMR
D (α,m)≥ΠFR

D (α,m) for any m≥mF and

α≥ 0.

Third, we show that w>βvh+(1−β)y implies ΠF
D(α,m)≥ΠFR

D (α,m) for any m≤mF and α≥ 0. Indeed,

ΠFR
D (α,m) =(γvh +(1− γ)m−w)β+min

(
(vh −m)(β+(1− θFR)(1−β)), b− cθ(θ

FR − θ0)
)

+

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β) (w− y)

)
(1− θFR)

=(γvh +(1− γ)m−w)θFRβ+min
(
(vh −m)(β+(1− θFR)(1−β)), b− cθ(θ

FR − θ0)
)

+

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
− (1−β) (w− y)+β(γvh +(1− γ)m−w)

)
(1− θFR)

≤(γvh +(1− γ)m−w)θFRβ+ b− cθ(θ
FR − θ0)+ (β(vh −w)− (1−β) (w− y)) (1− θFR)

≤(γvh +(1− γ)m−w)θFRβ+ b− cθ(θ
FR − θ0)

≤(γvh +(1− γ)m−w)θFβ+ b− cθ(θ
F − θ0)

=ΠF
D(α,m),

where the first inequality follows from min
(
(vh−m)(β+(1−θFR)(1−β)), b−cθ(θ

FR−θ0)
)
≤ b−cθ(θ

FR−θ0),

and since 1−β

α
ln
(

1−βe−α(vh−m)

1−β

)
is decreasing in α > 0 and taking the limit α→ 0. The second inequality

follows from the assumption w>βvh+(1−β)y. The last inequality follows since θF ≥ θFR from Lemma B.1

below, and (γvh + (1− γ)m−w)β − cθ ≥ 0 for any m ≤mF . Hence, we conclude that w > βvh + (1− β)y

implies ΠF
D(α,m)≥ΠFR

D (α,m) for any m≤mF and α≥ 0.

Last, Properties 2, 3, and 5 imply ΠMR
D ≤max(ΠF

D,Π
FR
D ) for any m≤mF and α≥ 0.

Putting all these observations together, we conclude that w > βvh + (1 − β)y implies

max(ΠF
D(α,m),ΠM

D (α,m))≥max(ΠFR
D (α,m),ΠMR

D (α,m)) for any m and α≥ 0.

Namely, strategies MR and FR are dominated for any m and α≥ 0, and it is enough to compare between

strategies F and M . Finally, Property 1 states ΠF
D(α,m)≥ΠM

D (α,m) if and only if m≥mF , concluding the

proof. □

Proposition B.3 shows that for products that are socially efficient to try by high valuation consumers only

the distributor generally implements strategy M or F in Theorem 1, depending on whether the consumers’

base ability to pay m is high or low, respectively.
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B.6. Strategy Map when cθ > (1−β)(w− y) with Homogeneous ATP

The strategy map when cθ > (1− β)(w− y) is simpler since only strategies F and FR can be optimal, as

shown in the following proposition.

Proposition B.4 Assume cθ > (1−β)(w− y) then the distributor’s optimal strategy in the resource alloca-

tion problem can be characterized as follows. Strategies M and MR in Theorem 1 are always dominated for

any m≤ vh. Moreover, consider the function a3(m) from Proposition B.2, then:

• Strategy F in Theorem 1 is optimal if and only if the customers’ risk aversion parameter is large enough.

Specifically,

max(ΠM
D ,ΠFR

D ,ΠMR
D )≤ΠF

D if and only if α≥ a3(m).

• Strategy FR in Theorem 1 is optimal if the customers’ the customers’ risk aversion parameter is small

enough. Specifically,

max(ΠF
D,Π

M
D ,ΠMR

D )≤ΠFR
D if and only if α≤ a3(m).

Proof. We build on the proof of Proposition B.2. Specifically, recall the threshold mF and the functions

a1(m), a2(m), and a3(m). Moreover, recall Properties 1 to 5.

We show that cθ > (1−β)(w− y) implies that M and MR are dominated for any m≤ vh and α≥ 0.

First, we show that cθ > (1− β)(w − y) implies ΠFR
D (α,m) ≥ ΠMR

D (α,m) for any m and α ≥ 0. Indeed,

cθ > (1 − β)(w − y) implies g1(m) < 0. Thus, by definition a1(m) = 0 for any m and Property 2 implies

ΠFR
D (α,m)≥ΠMR

D (α,m) for any m and α≥ 0.

Second, we show that cθ > (1− β)(w− y) implies max(ΠF
D(α,m),ΠFR

D (α,m))≥ΠM
D (α,m) for any m≤ vh

and α≥ 0. We consider two cases. Indeed, first assume β(vh −w)≤ cθ which is equivalent to mF ≥ vh. Thus,

Property 1 implies ΠF
D(α,m)≥ΠM

D (α,m) for any m≤ vh, completing the proof in the first case. Now assume

β(vh − w) > cθ, since by assumption cθ > (1 − β)(w − y) we conclude (1 − β)(w − y) < β(vh − w), which

implies g2(m) < 0 for all m ≤ vh. Thus, by definition a2(m) = ∞ for any m ≤ vh and Property 3 implies

ΠMR
D (α,m)≥ΠM

D (α,m) for any m≤ vh and α≤∞. Since we have already shown ΠFR
D (α,m)≥ΠMR

D (α,m)

for any m and α≥ 0, we conclude that β(vh −w)> cθ and cθ > (1−β)(w− y) imply ΠFR
D (α,m)≥ΠM

D (α,m)

for any m≤ vh and α≥ 0, completing the proof of the second case.

Putting all these observations together, we conclude that cθ > (1 − β)(w − y) implies

max(ΠF
D(α,m),ΠFR

D (α,m))≥max(ΠM
D (α,m),ΠMR

D (α,m)) for any m≤ vh and α≥ 0.

Namely, strategies M and MR are dominated for any m and α≥ 0, and it is enough to compare between

strategies F and FR. Finally, Property 4 states ΠF
D(α,m)≥ΠFR

D (α,m) if and only if α≥ a3(m), concluding

the proof. □

B.7. Proof of Corollary 1

Proof. The first statement in the corollary is the same as the first statement in Proposition B.2 taking

aF (m) = a3(m), while the second statement in the corollary follows directly from the last statement in

Proposition B.2.

The third statement in the corollary is the same as Proposition B.3, while the last statement in the

corollary is the same as Proposition B.4, completing the proof. □
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B.8. Consumer Surplus Analysis with Homogeneous ATP

We now state and prove a useful auxiliary lemma.

Lemma B.1 Let θi, i ∈ {F,M,FR,MR} be the education level of each strategy from Theorem 1. Then,

under Assumption 1,

θM = θMR ≥ θF ≥ θFR. (18)

Proof. From their definition, in the proof of Theorem 1, we have θM = θMR, where they are equal to the

natural upper bound on θ. Moreover, from Assumption 1 it follows that θM = θMR ≥ θF . We now argue that

θF ≥ θFR. In fact, if θFR = θ0 then θF ≥ θFR follows trivially from their definition, in the proof of Theorem

1. If θFR > θ0 then by definition again we must have cθ > (vh −m)(1− β)> 0, cθ(θ
FR − θ0) + (vh −m)(β +

(1− θFR)(1− β)) = b, and cθ(θ
F − θ0) + (vh −m)θF (1− β) = b, hence we conclude θF ≥ θFR in this case as

well, completing the proof. □

B.9. Proof of Proposition 2

Proof. Recall, from Proposition B.1, that

CSi = (vh −m)θiβ, i∈ {F,M},

and

CSi = (vh −m)β− 1−β

α
ln

(
1−βe−α(vh−m)

1−β

)(
1− θi

)
, i∈ {FR,MR}.

We now show that CSMR is the largest consumer surplus of the non-dominated distributor’s strategies

from Theorem 1. In particular, since θMR ≥ θFR from Lemma B.1 then CSMR ≥CSFR.

Moreover,

CSMR ≥ (vh −m)θMRβ = (vh −m)θMβ =CSM ≥ (vh −m)θFβ =CSF ,

where the first inequality follows since 1−β

α
ln
(

1−βe−α(vh−m)

1−β

)
is decreasing in α > 0 and taking the limit

α→ 0. The second inequality follows since, from Lemma B.1, θM = θMR ≥ θF . Hence, we conclude CSMR ≥
max(CSF ,CSM ,CSFR).

Finally, we show that there exists acs
F (m) such that CSF is the smallest consumer surplus of the non-

dominated distributor’s strategies from Theorem 1 if and only if α≥ acs
F (m). We have already shown CSMR ≥

CSM ≥CSF . We now show CSFR ≥CSF if and only if α≥ a4(m). Then, together with the first statement

in Proposition B.2, we will conclude ΠF
D ≥max(ΠM

D ,ΠFR
D ,ΠMR

D ) and CSF ≤min(CSMR,CSM ,CSFR) if and

only if m≤ m̄ and α≥max(aF (m), acs
F (m)), where aF (m) = a3(m). In fact, we have

CSFR ≥CSF ⇐⇒ 1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
≤ β(vh −m)

(1− θF )

(1− θFR)
,

where the term 1−β

α
ln
(

1−βe−α(vh−m)

1−β

)
is monotonically decreasing in α and has range [0, β(vh −m)]. Since

from Lemma B.1 we have θF ≥ θFR, then 0≤ β(vh −m) (1−θF )

(1−θFR)
≤ β(vh −m). Moreover, since θF is indepen-

dent of α and θFR is non-decreasing in α it follows that there exists acs
F (m) such that

1−β

α
ln

(
1−βe−α(vh−m)

1−β

)
≤ β(vh −m)

(1− θF )

(1− θFR)
⇐⇒ α≥ acs

F (m),

completing the proof. □
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B.10. Results from Section 4.3 on Free Returns with Homogeneous ATP

We first specify the model under the assumption that the distributor commits to a free return policy.

With free returns, the distributor’s pricing problem then becomes

Π∗
D(x, θ) =max

c,z
(c−w) ·B(p∗ −x,p∗ −x, θ)− (z− y) ·R(p∗ −x,p∗ −x, θ)+ γ ·CS(p∗ −x,p∗ −x, θ)

s.t. {p∗} ∈ argmax
p

(p− c) ·B(p−x,p−x, θ)− (p−x− z) ·R(p−x,p−x, θ) (IC)

B(p∗ −x,p∗ −x, θ)− (p∗ −x− z) ·R(p∗ −x,p∗ −x, θ)≥ 0. (IR)

(19)

and the distributor’s resource allocation problem remains unchanged.

Note that the same outcomes can be achieved in the original model by assuming that customers are

extremely risk averse, by taking the limit as α→∞, making customers max-min utility optimizers.

With the formulation at hand, we adapt Proposition B.1 to characterize the distributor’s pricing strategy

in this restricted setup, in the next proposition.

Proposition B.5 Consider any customer education level θ ∈ [0,1), ATP m∈ [w,vh], and subsidy x∈ [0, vh−
m]. Assume the distributor commits to a free returns policy. Then, the equilibrium customer price is pf =

m+x and the refund is rf =m. The equilibrium retailer refund is zf =m and the retailer price cf is

cf =m+x+
(1− θ)(1−β)θβ

θβ+(1− θ)
(zf − z̄f ).

The consumer surplus is CSf = (vh −m)β, retailer’s profit is 0, and the distributor’s profit is

Πf
D(x, θ) = (m+x−w)β+(1−β)(x−w+ y)(1− θ)+ γCSf .

Proposition B.5 is a special case of Proposition B.1 when α→∞. Therefore, we omit the proof.

Proof of Proposition 3. The proof of the first part of the proposition is the same as the proof of Theorem

1 for the special case when α→∞. Therefore, we only focus on the expressions that change. Specifically,

ΠMRf

D = (γvh +(1− γ)m−w)β+(b− cθ(1− θ0))
+ − (1−β)(w− y)

(
1− θ0 −

b

cθ

)+

. (20)

To simplify the notation, recall the function 1
x++ :=

{
0 if x≤ 0
1
x

if x> 0.
Then,

θFRf

= θ0 +

(
b− (vh −m)(β+(1− θ0)(1−β))

)+(
cθ − (vh −m)(1−β)

)++ 1{(vh−m)≤(w−y)},

and

ΠFRf

D = (γvh +(1− γ)m−w)β+min((vh −m)(β+(1− θ0)(1−β)), b)

− (1−β) (w− y) (1− θ0)+ (w− y− (vh −m))
+
(1−β)

(
b− (vh −m)(β+(1− θ0)(1−β))

)+(
cθ − (vh −m)(1−β)

)++ .

(21)

The proof of the second part of the proposition is the same as the proof of Property 2 in the proof of

Proposition B.2 for the special case when α→∞. Namely,

ΠMRf

D ≥ΠFRf

D ⇐⇒ dΠf
D(1)

dθ
= (1−β)(w− y)− cθ ≥ 0,

completing the proof. □
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Appendix C: Results from Section 5 on Heterogeneous ATP

Proposition C.1 Consider any consumer education level θ ∈ [0,1), ATPs ml,mh ∈ [w,vh], ml <mh, and

subsidy x∈ [0, vh −ml]. Then, the distributor’s optimal objective is

Π∗
D(x, θ) =max

{
ΠA

D(x, θ),Π
AR
D (x, θ),ΠS

D(x, θ),Π
SR
D (x, θ)

}
. (22)

Where Πi
D(x, θ) i∈ {A,AR,S,SR} each correspond to the distributor’s profits in a non-dominated strategy.

Specifically, these strategies are characterized by:

(A) Target all informed customers without product returns. The customer price is pA =ml + x and refund

is rA = 0. The retailer’s price and refund are cA =ml +x− ÔA
R

θβ
and zA = 0, respectively. The customer

surplus is CSA = (vh −ml)θβ. The retailer’s profit is ΠA
R = ÔA

R while the distributor’s profit is

ΠA
D(x, θ) = (ml +x−w)θβ− ÔA

R + γCSA,

where

ÔA
R =

{
λθβ(mh−ml)

1−λ
if θβ ≤ λ(θβ+(1− θ))

max
{

λθβ(mh−ml)

1−λ
, λθβ rα(mh)(1−θ)(1−β)−(mh−ml)(θβ+(1−θ))

λ(θβ+(1−θ))−θβ

}
if θβ > λ(θβ+(1− θ)).

This strategy can be sustained in equilibrium if and only if ÔA
R ≤UBA, where

UBA =

{
min

{
rα(ml)θβ(1−β), λθβ (rα(mh)(1−θ)(1−β)−(mh−ml)(θβ+(1−θ)))

λ(θβ+(1−θ))−θβ

}
if θβ ≤ λ(θβ+(1− θ))

rα(ml)θβ(1−β) if θβ > λ(θβ+(1− θ)).

(AR) Target all informed and uninformed customers with product returns. The customer price is pAR =ml+

x and the refund is rAR = rα(ml) = max
(
0,ml − 1

α
ln
(

1−βe−α(vh−ml)

1−β

))
. Let z̄AR = rα(ml)− ÔAR

R

(1−β)θβ
.

Then, without loss of generality, the equilibrium retailer refund is zAR =max(0, z̄AR) and the retailer

price is cAR =ml + x− ÔAR
R

θβ
+ (1−θ)(1−β)

θβ+(1−θ)
(zAR − z̄AR). The consumer surplus is CSAR = (vh −ml)β −

(ml − rα(ml))(1− θ)(1−β), the retailer’s profit is ΠAR
R = ÔAR

R , and the distributor’s profit is

ΠAR
D (x, θ) = (ml +x−w)β+(ml +x− rα(ml)−w+ y)(1−β)(1− θ)− ÔAR

R + γCSAR,

where

ÔAR
R =

λ

1−λ
((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1− θ)(1−β))+.

This strategy can be sustained in equilibrium if and only if

ÔAR
R ≤ (ml +x)β+(ml +x− rα(ml))(1− θ)(1−β).

(S) Target only informed customers with high ATP without product returns. The customer price is pS =

mh+x and refund is rS = 0. The retailer’s price and refund are cS =mh+x and zS = 0, respectively. The

customer surplus is CSS = (vh−mh)λθβ. The retailer attains no profit, ΠS
R = 0, while the distributor’s

profit is

ΠS
D(x, θ) = (mh +x−w)λθβ+ γCSS.

This strategy can always be sustained in equilibrium.
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(SR) Target both informed and uninformed customers with product returns. The customer price is pSR =

mh+x and the refund is rSR = rα(mh) =max
(
0,mh − 1

α
ln
(

1−βe−α(vh−mh)

1−β

))
. The equilibrium retailer

price is cSR = mh + x, and the retailer refund is zSR = rα(mh). The consumer surplus is CSSR =

(vh−mh)λβ−(mh−rα(mh))λ(1−θ)(1−β), the retailer attains no profit, ΠSR
R = 0, and the distributor’s

profit is

ΠSR
D (x, θ) = (mh +x−w)λβ+(mh +x− rα(mh)−w+ y)λ(1−β)(1− θ)+ γCSSR.

This strategy can always be sustained in equilibrium.

Proof. First, we analyze the retailer’s pricing problem and show that the optimal nominal price to

consumers and refund are such that (p∗, r∗) ∈ {(ml + x,0), (ml + x, rα(ml)), (mh + x,0)(mh + x, rα(mh))}.
Note that the expected fraction of customers who purchase the product is B(p, r, θ) = (λ1{p−x≤mh} + (1−
λ)1{p−x≤ml})

(
θβ+(1− θ)1{r≥rα(p−x)}

)
. Since all indicator functions are decreasing in p (cf. Equation 7),

it follows that, for a given r, the optimal retailer’s price p∗ is such that p∗ ∈ {ml +x,mh +x,pα(r)+x}.
Then, if p∗ =ml +x the retailer’s profit function is

ΠR (ml +x, r) = (ml +x− c)
(
θβ+(1− θ)1{r≥rα(ml)}

)
− (r− z)(1− θ)(1−β)1{r≥rα(ml)}.

The profit function above is constant for r < rα(ml), has an increasing or decreasing step at r= rα(ml), and

is linear decreasing for r > rα(ml). Therefore, r
∗ ∈ {0, rα(ml)} when p∗ =ml +x.

Similarly, if p∗ =mh +x the retailer’s profit function is

ΠR (mh +x, r) = (mh +x− c)λ
(
θβ+(1− θ)1{r≥rα(mh)}

)
− (r− z)λ(1− θ)(1−β)1{r≥rα(mh)}.

As before, the profit function above is constant for r < rα(mh), has an increasing or decreasing step at

r= rα(mh), and is linear decreasing for r > rα(mh). Therefore, r
∗ ∈ {0, rα(mh)} when p∗ =mh +x.

Conversely, if p∗ = pα(r)+x the retailer’s profit function is

ΠR (pα(r)+x, r) =(pα(r)+x− c)
(
λ1{pα(r)≤mh}+(1−λ)1{pα(r)≤ml}

)
(θβ+(1− θ))

− (r− z)
(
λ1{pα(r)≤mh}+(1−λ)1{pα(r)≤ml}

)
(1− θ)(1−β).

The profit function above is zero if pα(r)>mh since customers cannot afford the product. When pα(r)≤ml

or ml < pα(r)≤mh (equivalently when r≤ rα(ml) or rα(ml)< r≤ rα(mh)) the profit function is increasing

in r. To show this, first note that when r≤ rα(ml) we have

∂ΠR (pα(r)+x, r)

∂r
= p′

α(r) (θβ+(1− θ))− (1− θ)(1−β) =
θβ+(1− θ)

r′α(pα(r))
− (1− θ)(1−β),

where the second equality comes from the fact that pα = r−1
α . Then, from Equation 7, for any p∈ [0, vh +x],

we have that

r′α(p)≤ 1+
β

1−β
≤ 1+

β

(1− θ)(1−β)
=

θβ+(1− θ)

(1− θ)(1−β)
.

The first inequality comes from noting that r′α(p), given in Equation 7, is increasing in p for p∈ [0, vh+x] and

that r′α(vh + x) = 1+ β

1−β
. The analysis for the case when rα(ml)< r≤ rα(mh) is analogous. It follows that
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∂ΠR(pα(r)+x,r)

∂r
≥ 0 when r≤ rα(ml) or rα(ml)< r≤ rα(mh), thus r

∗ ∈ {rα(ml), rα(mh)} when p∗ = pα(r)+x,

hence p∗ ∈ {ml +x,mh +x} in this case as well.

Hence, we conclude that (p∗, r∗)∈ {(ml +x,0), (ml +x, rα(ml)), (mh +x,0), (mh +x, rα(mh))}, fully char-

acterizing the equilibrium behavior of the retailer. With the retailer’s equilibrium behavior in hand, we now

characterize the distributor’s equilibrium pricing and refund strategies.

Strategy (S): First assume that the distributor is interested in inducing the retailer to target informed

consumers with high valuation and high ATP, i.e. set p∗ =mh +x and r∗ = 0. In this case, the distributor’s

problem can be written as

max
c,z≥0

(c−w)λθβ+ γ(vh −mh)λθβ

s.t. (mh +x− c)λθβ ≥ (ml +x− c)θβ (ICSA)

(mh +x− c)λθβ ≥ (ml +x− c) (θβ+(1− θ))− (rα(ml)− z)(1− θ)(1−β) (ICSAR)

(mh +x− c)λθβ ≥ (mh +x− c)λ (θβ+(1− θ))− (rα(mh)− z)(1− θ)λ(1−β) (ICSSR)

(mh +x− c)λθβ ≥ 0. (IRS)

The (ICSA), (ICSAR), (ICSSR) constraints above imply that the retailer sets p∗ = mh + x and r∗ = 0.

Moreover, note that (ICSAR) is redundant since it is implied by (ICSA) and (ICSSR) combined. Indeed,

(ICSSR) implies (ICAAR), the latter combined with (ICSA) implies (ICSAR).

The objective function is increasing in c and independent of z, with an upper bound c≤mh +x given by

the (IRS) constraint (note that the (ICSA) and (ICSSR) are trivially satisfied for any ml ≤mh). Hence, in

particular c∗ =mh +x and z∗ = 0, and strategy (S) can always be induced by the distributor.

Strategy (SR): Now assume that the distributor is interested in inducing the retailer to target all informed

and uninformed consumers with high ATP, i.e. set p∗ =mh+x and r∗ = rα(mh). In this case, the distributor’s

problem can be written as

max
c,z≥0

(c−w)λ (θβ+(1− θ))− (z− y)λ(1− θ)(1−β)+ γ((vh −mh)β− (mh − rα(mh))λ(1− θ)(1−β))

s.t. (mh +x− c)λ (θβ+(1− θ))− (rα(mh)− z)λ(1− θ)(1−β)≥ (ml +x− c)θβ (ICSRA)

(mh +x− c)λ (θβ+(1− θ))− (rα(mh)− z)λ(1− θ)(1−β)≥

(ml +x− c) (θβ+(1− θ))− (rα(ml)− z)(1− θ)(1−β) (ICSRAR)

(mh +x− c)λ (θβ+(1− θ))− (rα(mh)− z)λ(1− θ)(1−β)≥ (mh +x− c)λθβ (ICSRS)

(mh +x− c)λ (θβ+(1− θ))− (rα(mh)− z)λ(1− θ)(1−β)≥ 0. (IRSR)

The (ICSRA), (ICSRAR), (ICSRS) constraints above imply that the retailer sets p∗ =mh+x and r∗ = rα(mh).

Note that the objective is increasing in c and decreasing in z, leading to c∗ =mh + x and z∗ = rα(mh),

i.e., the constraints (ICSRS) and (IRSR) are tight. Note that constraint (ICSRA) is trivially satisfied for any

ml ≤mh, while constraint (ICSRAR) becomes redundant in this solution since it is implied by the combi-

nation of (ICSRA), and (ICSRS) being tight. Specifically, since (ICSRS) is tight it is equivalent to (ICSSR),

while (ICSRA) is equivalent to (ICSA) and (ICSRAR) is equivalent to (ICSAR). Thus, since (ICSSR) implies
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(ICAAR), and the latter combined with (ICSA) imply (ICSAR) we conclude that (ICSRAR) is guaranteed to

be satisfied in this solution. Thus, strategy (SR) can always be induced by the distributor.

Strategy (AR): Assume that the distributor is interested in inducing the retailer to target all informed

and uninformed consumers, i.e. set p∗ =ml + x and r∗ = rα(ml). In this case, the distributor’s problem can

be written as

max
c,z≥0

(c−w) (θβ+(1− θ))− (z− y)(1− θ)(1−β)+ γ((vh −ml)β− (ml − rα(ml))(1− θ)(1−β))

s.t. (ml +x− c) (θβ+(1− θ))− (rα(ml)− z)(1− θ)(1−β)≥ (ml +x− c)θβ (ICARA)

(ml +x− c) (θβ+(1− θ))− (rα(ml)− z)(1− θ)(1−β)≥ (mh +x− c)λθβ (ICARS)

(ml +x− c) (θβ+(1− θ))− (rα(ml)− z)(1− θ)(1−β)≥

(mh +x− c)λ (θβ+(1− θ))− (rα(mh)− z)λ(1− θ)(1−β) (ICARSR)

(ml +x− c) (θβ+(1− θ))− (rα(ml)− z)(1− θ)(1−β)≥ 0. (IRAR)

The (ICARA), (ICARS), (ICARSR) constraints above imply that the retailer sets p∗ =ml+x and r∗ = rα(ml).

Moreover, note that (ICARS) is redundant, implied by (ICARA) and (ICARSR) combined. Indeed, (ICARA)

implies (ICSRS), the latter combined with (ICARSR) implies (ICARS).

Let ÔAR
R = λ/(1−λ)((mh−ml)β−(ml−rα(ml)−(mh−rα(mh)))(1−θ)(1−β))+. Note that the objective is

increasing in c and decreasing in z, leading to c∗ =ml+x− ÔAR
R

θβ
+ (1−θ)(1−β)

θβ+(1−θ)
(z∗− z̄AR) and z∗ =max(0, z̄AR),

where z̄AR = rα(ml)− ÔAR
R

(1−β)θβ
, i.e., the constraints (ICARA) and one of (IRAR) or (ICARSR) are tight when

z̄AR ≥ 0, or the constraint (ICARA) is redundant and one of (IRAR) or (ICARSR) is tight when z̄AR < 0, as

long as

ÔAR
R ≤ (ml +x)β+(ml +x− rα(ml))(1− θ)(1−β), (23)

that is, as long as c∗ ≥ 0. Alternatively, if Equation 23 is not satisfied then the problem is infeasible, i.e.,

strategy (AR) cannot be induced by the distributor.

Strategy (A): Finally, assume that the distributor is interested in inducing the retailer to target all informed

consumers, i.e. set p∗ =ml +x and r∗ = 0. In this case, the distributor’s problem can be written as

max
c,z≥0

(c−w)θβ+ γ(vh −ml)θβ

s.t. (ml +x− c)θβ ≥ (ml +x− c) (θβ+(1− θ))− (rα(ml)− z)(1− θ)(1−β) (ICAAR)

(ml +x− c)θβ ≥ (mh +x− c)λθβ (ICAS)

(ml +x− c)θβ ≥ (mh +x− c)λ (θβ+(1− θ))− (rα(mh)− z)λ(1− θ)(1−β) (ICASR)

(ml +x− c)θβ ≥ 0. (IRA)

The (ICASR), (ICAS), (ICAAR) constraints above imply that the retailer sets p∗ =ml +x and r∗ = 0.

Assume first that θβ ≤ λ(θβ + (1− θ)). Let ÔA1
R = λθβ

1−λ
(mh −ml). The objective is increasing in c and

independent of z, with an upper bound c≤ml+x− ÔA1
R

θβ
given by the (IRA) and (ICAS) constraints as long

as

ÔA1
R ≤min

{
rα(ml)θβ(1−β), λθβ

(rα(mh)(1− θ)(1−β)− (mh −ml)(θβ+(1− θ)))

λ(θβ+(1− θ))− θβ

}
, (24)
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i.e., as long as constraints (ICAAR) and (ICASR) are satisfied. Hence, in particular c∗ =ml + x− ÔA1
R

θβ
and

z∗ = 0, leading to strategy (A) in the statement of the proposition. Alternatively, if Equation 24 is not

satisfied then the problem is infeasible, i.e., strategy (A) cannot be induced by the distributor when θβ ≤
λ(θβ+(1− θ)).

Now assume that θβ > λ(θβ+(1− θ)). Let

ÔA2
R =max

{
λθβ

1−λ
(mh −ml), λθβ

rα(mh)(1− θ)(1−β)− (mh −ml)(θβ+(1− θ))

λ(θβ+(1− θ))− θβ

}
.

The objective is increasing in c and independent of z, with an upper bound c≤ml + x− ÔA2
R

θβ
given by the

(IRA), (ICAS), and (ICASR) constraints as long as

ÔA2
R ≤ rα(ml)θβ(1−β), (25)

i.e., as long as constraint (ICAAR) is satisfied. Hence, in particular c∗ =mh+x− ÔA2
R

θβ
and z∗ = 0. Alternatively,

if Equation 25 is not satisfied then the problem is infeasible, i.e., strategy (A) cannot be induced by the

distributor when θβ > λ(θβ+(1− θ)). □

C.1. Proof of Proposition 4

Proof. We first show that the distributor’s objective function is increasing in x. Note that

∂ΠA
D

∂x
= θβ > 0,

∂ΠAR
D

∂x
= β+(1− θ)(1−β)> 0,

∂ΠS
D

∂x
= λθβ > 0, and

∂ΠSR
D

∂x
= λ(β+(1− θ)(1−β))> 0.

Hence,
∂Π∗

D

∂x
> 0.

In contrast, the distributor’s objective function is not always increasing in θ. To prove this, we show that

Equation 5 in the statement of the proposition is equivalent to
∂ΠSR

D

∂θ
≤ 0, and it implies ΠS

D ≤ΠSR
D ,

∂ΠAR
D

∂θ
≤ 0,

and
∂ΠA

D

∂θ
≤ 0 or ΠA

D ≤ΠAR
D . Hence, Equation 5 implies

∂Π∗
D

∂θ
≤ 0.

First, we show that Equation 5 is equivalent to
∂ΠSR

D

∂θ
≤ 0. Note that,

∂ΠSR
D

∂θ
=−(1− γ)λ

1−β

α
ln

(
1−βe−α(vh−mh)

1−β

)
+λ(1−β)(w− y−x).

Then,

∂ΠSR
D

∂θ
≤ 0 ⇐⇒ y+(1− γ)

1

α
ln

(
1−βe−α(vh−mh)

1−β

)
+x−w≥ 0

⇐⇒ mh +x−w− (rα(mh)− y)− γ(m− rα(mh))≥ 0.

Second, we now show that Equation 5 implies ΠS
D ≤ΠSR

D . Indeed, from Proposition C.1 it follows that

ΠS
D ≤ΠSR

D ⇐⇒ mh +x−w− (1−β)(rα(mh)− y)+ γ(β(vh −mh)− (1−β)(mh − rα(mh)))≥ 0,

or equivalently

ΠS
D ≤ΠSR

D ⇐⇒ y+(1− γ)
1

α
ln

(
1−βe−α(vh−mh)

1−β

)
+x−w+

β

1−β
(γvh +(1− γ)mh +x−w)≥ 0.

By noting that (γvh +(1− γ)mh +x−w)≥ 0 we conclude that Equation 5 implies ΠS
D ≤ΠSR

D .
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Third, we show that Equation 5 also implies
∂ΠAR

D

∂θ
≤ 0. Note that,

∂ΠAR
D

∂θ
=− (1− γ)

1−β

α
ln

(
1−βe−α(vh−ml)

1−β

)
+(1−β)(w− y−x)

− λ

1−λ
(ml − rα(ml)− (mh − rα(mh)))(1−β),

Then,

∂ΠAR
D

∂θ
≤ 0 ⇐⇒ y+(1− γ)

1

α
ln

(
1−βe−α(vh−ml)

1−β

)
+x−w+

λ

1−λ
(ml − rα(ml)− (mh − rα(mh)))≥ 0.

Since m− rα(m) is decreasing in m, then Equation 5 also implies
∂ΠAR

D

∂θ
≤ 0.

Fourth, we show that Equation 5 implies
∂ΠA

D

∂θ
≤ 0 or ΠA

D ≤ΠAR
D . On the one hand, from Proposition C.1

it follows that

ΠA
D ≤ΠAR

D ⇐⇒ml +x−w− (1−β)(rα(ml)− y)+ γ(β(vh −ml)− (1−β)(ml − rα(ml)))

− λ

1−λ
(β(mh −ml)− (1−β)(ml − rα(ml)− (mh − rα(mh))))≥ 0,

or equivalently

ΠA
D ≤ΠAR

D ⇐⇒ y+(1− γ)
1

α
ln

(
1−βe−α(vh−ml)

1−β

)
+x−w+

λ

1−λ
(ml − rα(ml)− (mh − rα(mh)))

+
β

1−β

(
γvh +(1− γ)ml +x−w− λ

1−λ
(mh −ml)

)
≥ 0.

On the other hand, Lemma C.1 below implies

∂ΠA
D

∂θ
= (γvh +(1− γ)ml +x−w)β− λβ

1−λ
(mh −ml).

Hence, we conclude that if Equation 5 holds, then ΠA
D >ΠAR

D implies
∂ΠA

D

∂θ
≤ 0, i.e., ΠA

D ≤ΠAR
D or

∂ΠA
D

∂θ
≤ 0

must hold.

Thus, we have shown Equation 5 is equivalent to
∂ΠSR

D

∂θ
≤ 0, and it implies ΠS

D ≤ ΠSR
D ,

∂ΠAR
D

∂θ
≤ 0, and

∂ΠA
D

∂θ
≤ 0 or ΠA

D ≤ΠAR
D . Hence, Equation 5 implies

∂Π∗
D

∂θ
≤ 0.

Finally,
∂2ΠA

D

∂θ∂x
= β > 0,

∂2ΠAR
D

∂θ∂x
=−(1− β)< 0,

∂2ΠS
D

∂θ∂x
= λβ > 0, and

∂2ΠSR
D

∂θ∂x
=−λ(1− β)< 0. This concludes

the proof. □

Lemma C.1 Under Assumption 2, if θβ > λ(θβ+(1− θ)) then

λθβ
rα(mh)(1− θ)(1−β)− (mh −ml)(θβ+(1− θ))

λ(θβ+(1− θ))− θβ
≤ λθβ(mh −ml)

1−λ
.

Thus, by its definition in Proposition C.1 it follows that under Assumption 2 we have Ôa
R = λθβ(mh−ml)

1−λ
.

Proof. The assumptions in the lemma imply rα(mh)(1− β)(1− λ) ≥ (mh − βvh)(1− λ) ≥ (mh −ml),

since the first inequality follows from rα(mh) being increasing in α > 0 and taking the limit as α→ 0, and

the second inequality is equivalent to the assumption λ≤ ml−βvh
mh−βvh

when mh >βvh.

This inequality implies the result in the lemma. Indeed,

λθβ
rα(mh)(1− θ)(1−β)− (mh −ml)(θβ+(1− θ))

λ(θβ+(1− θ))− θβ
≤ λθβ(mh −ml)

1−λ

⇐⇒ (rα(mh)(1− θ)(1−β)− (mh −ml)(θβ+(1− θ)))(1−λ)≥ (mh −ml)(λ(θβ+(1− θ))− θβ)

⇐⇒ rα(mh)(1− θ)(1−β)(1−λ)≥ (mh −ml)(1− θ)

⇐⇒ rα(mh)(1−β)(1−λ)≥ (mh −ml),

where the first equivalence follows from the assumption θβ > λ(θβ+(1− θ)), completing the proof. □



Calmon et al.: Operational Strategies for Distributing Durable Goods in the Base of the Pyramid
Article submitted to Manufacturing & Service Operations Management; 55

C.2. Proof of Theorem 2

Proof. Let (x∗, θ∗) be the optimal solution of the distributor’s allocation problem with heterogeneous

ATPs. We analyze strategies A, AR, S, and SR from Proposition C.1 separately.

FS and MS: Assume first that Π∗
D(x

∗, θ∗) =ΠS
D(x

∗, θ∗).

Since
∂ΠS

D

∂x
= λθβ > 0 and

∂ΠS
D

∂θ
= λ(γvh + (1− γ)m+ x−w)β > 0 then from Assumption 1 it follows that

the optimal solution to the resource allocation problem exhausts the budget, i.e., cθ(θ
∗ − θ0) + λθ∗βx∗ = b,

or equivalently x∗(θ) = b−cθ(θ−θ0)

λθβ
. By replacing x∗(θ) in the resource allocation problem, it simplifies to the

following one-variable optimization problem

max
θ

ΠS
D(θ) = (γvh +(1− γ)mh −w)λθβ+ b− cθ(θ− θ0)

s.t. θ ∈ [θ0,1],
b− cθ(θ− θ0)

λθβ
∈ [0, vh −mh].

(26)

Let θS be the optimal solution of problem (26), and xS = b−cθ(θ
S−θ0)

λθSβ
. The objective function of problem

(26), ΠS
D(θ), is linear. Moreover,

dΠS
D(θ)

dθ
= (γvh +(1− γ)mh −w)λβ− cθ. (27)

Hence, θS must be equal to one of its upper or lower bound, i.e.,

θS ∈
{
θ0 +

(b−λθ0β(vh −mh))
+

cθ +λβ(vh −mh)
,min

(
1, θ0 +

b

cθ

)}
,

and thus

xS ∈
{
min

(
vh −mh,

b

λθ0β

)
,
(b− cθ(1− θ0))

+

λβ

}
.

Namely, when following strategy S in Proposition C.1 the distributor either invests the budget in increasing

the consumers’ maximum ability to pay first, and then the consumer education level only if there is budget

available (strategy FS), or invests the budget in increasing the consumer education level first, and then the

consumers’ maximum ability to pay only if there is budget available (strategy MS). Specifically,

θFS = θ0 +
(b−λθ0β(vh −mh))

+

cθ +λβ(vh −mh)
, xFS =min

(
vh −mh,

b

λθ0β

)
,

and

ΠFS
D =

(
γvh +(1− γ)mh +min

(
vh −mh,

b

λθ0β

)
−w

)(
θ0 +

(b−λθ0β(vh −mh))
+

cθ +λβ(vh −mh)

)
λβ.

Similarly,

θMS =min

(
1, θ0 +

b

cθ

)
, xMS =

(b− cθ(1− θ0))
+

λβ
,

and

ΠMS
D = (γvh +(1− γ)mh −w)min

(
1, θ0 +

b

cθ

)
λβ+(b− cθ(1− θ0))

+.

FSR and MSR: Assume now that Π∗
D(x

∗, θ∗) =ΠSR
D (x∗, θ∗).

Since
∂ΠSR

D

∂x
= λ(β + (1 − θ)(1 − β)) > 0, then from Assumption 1 it follows that the optimal sub-

sidy must either be equal to its upper bound or the budget constraint must be tight, i.e., x∗(θ) =
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min
(
vh −mh,

b−cθ(θ−θ0)

λ(β+(1−θ)(1−β))

)
. By replacing x∗(θ) in the resource allocation problem, it simplifies to the

following one-variable optimization problem

max
θ

ΠSR
D (θ) = (γvh +(1− γ)mh −w)λβ+min

(
(vh −mh)λ(β+(1− θ)(1−β)), b− cθ(θ− θ0)

)
+

(
1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (w− y)

)
λ(1−β)(1− θ)

s.t. θ ∈ [θ0,1], cθ(θ− θ0)≤ b.

(28)

Let θSR be the optimal solution of problem (28) and xSR = x∗(θSR). Since the minimum of two linear

functions is concave, then the objective function of problem (28), ΠSR
D (θ), is piece-wise linear concave with

at most two pieces. Moreover, note that

dΠSR
D (θ)

dθ
=−

(
1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (w− y)

)
λ(1−β)

− cθ − ((vh −mh)λ(1−β)− cθ)1{cθ(θ−θ0)+(vh−mh)λ(β+(1−θ)(1−β))≤b}. (29)

Hence, we conclude that either θSR is equal to its upper bound, i.e., θSR =min
(
1, θ0 +

b
cθ

)
, or alternatively

θSR must be equal to one of its lower bound or the kink between the linear pieces of ΠSR
D (θ), i.e., θSR ∈{

θ0,
b+cθθ0−λ(vh−m)

cθ−(vh−m)λ(1−β)

}
. Namely, when following strategy SR in Proposition C.1 the distributor either invests

the budget in increasing the consumer education level first, and then the consumers’ maximum ability to

pay only if there is budget available (strategy MSR), or invests the budget in increasing the consumers’

maximum ability to pay first, and then in increasing the consumer education level only if it is beneficial and

there is budget available (strategy FSR). Specifically,

θMSR =min

(
1, θ0 +

b

cθ

)
, xMSR =

(b− cθ(1− θ0))
+

λβ
,

and
ΠMSR

D = (γvh +(1− γ)mh −w)λβ+(b− cθ(1− θ0))
+

+

(
1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (w− y)

)
(1−β)λ

(
1− θ0 −

b

cθ

)+

.
(30)

In order to write θFSR in closed form there are two possible cases depending on whether ΠSR
D (θ) has a

kink in the feasible interval of problem (28),
[
θ0,min

(
1, θ0 +

b
cθ

)]
. We analyze these cases next.

First assume cθ ≤ (vh −mh)λ(1−β), then from Assumption 1 it follows that ΠSR
D (θ) does not have a kink

in the feasible interval of problem (28). Specifically, if cθ < (vh−mh)λ(1−β) then b+cθθ0−λ(vh−mh)

cθ−(vh−mh)λ(1−β)
≥ 1, and

if cθ = (vh −mh)λ(1− β) then b− cθ(θ − θ0) ≤ (vh −mh)λ(β + (1− θ)(1− β)) for all θ. Namely, at θ = θ0

there is no leftover budget after investing in x and θFSR = θ0 in this sub-case.

Now assume cθ > (vh−mh)λ(1−β), then from Assumption 1 it follows that ΠSR
D (θ) has a kink in the feasible

interval of problem (28) if and only if b+cθθ0−λ(vh−mh)

cθ−(vh−mh)λ(1−β)
≥ θ0, or equivalently (vh−mh)λ(β+(1−θ0)(1−β))≤

b. Moreover, from Equation 29 it follows that the kink will attain an objective value at least as large as the

solution θ= θ0 if and only if y≤ ySR
θ , where

ySR
θ ≡w− (1− γ)

1

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (vh −mh).
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To simplify the notation, we define the function 1
x++ :=

{
0 if x≤ 0
1
x

if x> 0.
Then,

θFSR = θ0+

(
b− (vh −mh)λ(β+(1− θ0)(1−β))

)+(
cθ − (vh −mh)λ(1−β)

)++ 1{y≤ySR
θ }, x

FSR =min

(
vh −mh,

b

λ(β+(1− θ0)(1−β))

)
,

and

ΠFSR
D = (γvh +(1− γ)mh −w)λβ+min((vh −mh)λ(β+(1− θ0)(1−β)), b)

+

(
1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (w− y)

)
(1−β)λ (1− θ0)

+

(
w− y− 1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (vh −mh)

)+

(1−β)λ

(
b− (vh −mh)λ(β+(1− θ0)(1−β))

)+(
cθ − (vh −mh)λ(1−β)

)++ .

(31)

FA and MA: Assume now that Π∗
D(x

∗, θ∗) =ΠA
D(x

∗, θ∗).

Since
∂ΠA

D

∂x
= θβ > 0 then from Assumption 1 it follows that the optimal subsidy must either be equal to

its upper bound or the budget constraint must be tight, i.e., x∗(θ) =min
(
vh −ml,

b−cθ(θ−θ0)

θβ

)
. By replacing

x∗(θ) in the resource allocation problem, it simplifies to the following one-variable optimization problem

max
θ

ΠA
D(θ) = (γvh +(1− γ)ml −w)θβ+min((vh −ml)θβ, b− cθ(θ− θ0))−

λθβ

1−λ
(mh −ml)

s.t. θ ∈ [θ0,1], cθ(θ− θ0)≤ b,

(32)

where ÔA
R = λθβ

1−λ
(mh −ml) follows from Assumption 2 and Lemma C.1.

Let θA be the optimal solution of problem (32), and xA = x∗(θA). Since the minimum of two linear functions

is concave, then the objective function of problem (32), ΠA
D(θ), is piece-wise linear concave with at most two

pieces. Moreover, note that

dΠA
D(θ)

dθ
= (γvh +(1− γ)ml −w)β− cθ +((vh −ml)β+ cθ)1{cθ(θ−θ0)+(vh−ml)θβ≤b} −

λβ

1−λ
(mh −ml). (33)

Hence, we conclude that either θa is equal to its upper bound, i.e., θa =min
(
1, θ0 +

b
cθ

)
, or alternatively

θa must be equal to one of its lower bound or the kink between the linear pieces of ΠA
D(θ), i.e., θa ∈{

θ0,
b+cθθ0

cθ+(vh−ml)β

}
.

Namely, when following strategy A in Proposition C.1 the distributor either invests the budget in increasing

the consumer education level first, and then the consumers’ maximum ability to pay only if there is budget

available (strategy MA), or invests the budget in increasing the consumers’ maximum ability to pay first,

and then in increasing the consumer education level only if it is beneficial and there is budget available

(strategy FA). Specifically,

θMA =min

(
1, θ0 +

b

cθ

)
, xMA =

(b− cθ(1− θ0))
+

β
,

and

ΠMA
D =

(
γvh +(1− γ)ml −w− λ

1−λ
(mh −ml)

)
min

(
1, θ0 +

b

cθ

)
β+(b− cθ(1− θ0))

+.

In order to write θFA in closed form there are two possible cases depending on whether ΠA
D(θ) has a kink

in the feasible interval of problem (32),
[
θ0,min

(
1, θ0 +

b
cθ

)]
. From Assumption 1, ΠD(θ) has a kink in the

feasible interval of problem (32) if and only if b+cθθ0
cθ+(vh−ml)β

≥ θ0, or equivalently (vh −m)θ0β ≤ b. Moreover,
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from Equation 33 it follows that the kink will attain an objective value at least as large as the solution θ= θ0

if and only if w≤wA
θ where

wA
θ ≡ vh + γ(vh −ml)−

λ

1−λ
(mh −ml).

Then,

θFA = θ0 +

(
b− θ0β(vh −ml)

)+
cθ +(vh −ml)β

1{w≤wA
θ }, x

FA =min

(
vh −ml,

b

θ0β

)
,

and

ΠFA
D =

(
γvh +(1− γ)ml +min

(
vh −ml,

b

θ0β

)
−w− λ

1−λ
(mh −ml)

)(
θ0 +

(b− θ0β(vh −ml))
+

cθ +β(vh −ml)
1{w≤wA

θ }
)
β.

FAR and MAR: Finally, assume that Π∗
D(x

∗, θ∗) =ΠAR
D (x∗, θ∗).

Since
∂ΠAR

D

∂x
= β+(1−θ)(1−β)> 0, then from Assumption 1 it follows that the optimal subsidy must either

be equal to its upper bound or the budget constraint must be tight, i.e., x∗(θ) =min
(
vh −ml,

b−cθ(θ−θ0)

β+(1−θ)(1−β)

)
.

By replacing x∗(θ) in the resource allocation problem, it simplifies to the following one-variable optimization

problem

max
θ

ΠAR
D (θ) = (γvh +(1− γ)ml −w)β+min

(
(vh −ml)(β+(1− θ)(1−β)), b− cθ(θ− θ0)

)
− λ

1−λ
((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1− θ)(1−β))

+

(
1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)

)
(1−β)(1− θ)

s.t. θ ∈ [θ0,1], cθ(θ− θ0)≤ b.

(34)

Let θAR be the optimal solution of problem (34) and xAR = x∗(θAR). Since the minimum of two linear

functions is concave, then the objective function of problem (34), ΠAR
D (θ), is piece-wise linear concave with

at most two pieces. Moreover, note that

dΠAR
D (θ)

dθ
=−

(
1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)

)
(1−β)

− cθ − ((vh −ml)(1−β)− cθ)1{cθ(θ−θ0)+(vh−ml)(β+(1−θ)(1−β))≤b}

− λ

1−λ
(ml − rα(ml)− (mh − rα(mh)))(1−β). (35)

Hence, we conclude that either θb is equal to its upper bound, i.e., θb =min
(
1, θ0 +

b
cθ

)
, or alternatively

θb must be equal to one of its lower bound or the kink between the linear pieces of ΠAR
D (θ), i.e., θb ∈{

θ0,
b+cθθ0−(vh−ml)

cθ−(vh−ml)(1−β)

}
. Namely, when following strategy (b) in Proposition C.1 the distributor either invests

the budget in increasing the consumer education level first, and then the consumers’ maximum ability to

pay only if there is budget available (strategy MAR), or invests the budget in increasing the consumers’

maximum ability to pay first, and then in increasing the consumer education level only if it is beneficial and

there is budget available (strategy FAR).

Specifically,

θMAR =min

(
1, θ0 +

b

cθ

)
, xMAR =

(b− cθ(1− θ0))
+

β
,
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and
ΠMAR

D = (γvh +(1− γ)ml −w)β+(b− cθ(1− θ0))
+

− λ

1−λ

(
(mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β)

(
1− θ0 −

b

cθ

)+
)

+

(
1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)

)
(1−β)

(
1− θ0 −

b

cθ

)+

.

(36)

In order to write θFAR in closed form there are two possible cases depending on whether ΠAR
D (θ) has a

kink in the feasible interval of problem (34),
[
θ0,min

(
1, θ0 +

b
cθ

)]
. We analyze these cases next.

First assume cθ ≤ (vh −ml)(1− β), then from Assumption 1 it follows that ΠAR
D (θ) does not have a kink

in the feasible interval of problem (34). Specifically, if cθ < (vh −ml)(1− β) then b+cθθ0−(vh−ml)

cθ−(vh−ml)(1−β)
≥ 1, and if

cθ = (vh −ml)(1− β) then b− cθ(θ− θ0)≤ (vh −ml)(β+ (1− θ)(1− β)) for all θ. Namely, at θ = θ0 there is

no leftover budget after investing in x and θFAR = θ0 in this sub-case.

Now assume cθ > (vh−ml)(1−β), then from Assumption 1 it follows that ΠAR
D (θ) has a kink in the feasible

interval of problem (34) if and only if b+cθθ0−(vh−ml)

cθ−(vh−ml)(1−β)
≥ θ0, or equivalently (vh−ml)(β+(1− θ0)(1−β))≤ b.

Moreover, from Equation 35 it follows that the kink will attain an objective value at least as large as the

solution θ= θ0 if and only if y≤ yAR
θ , where

yAR
θ ≡w− (1− γ)

1

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (vh −ml)−

λ

1−λ
(ml − rα(ml)− (mh − rα(mh))).

Then,

θFAR = θ0 +

(
b− (vh −ml)(β+(1− θ0)(1−β))

)+(
cθ − (vh −ml)(1−β)

)++ 1{y≤yAR
θ }, x

FAR =min

(
vh −ml,

b

β+(1− θ0)(1−β)

)
,

and

ΠFAR
D = (γvh +(1− γ)ml −w)β+min((vh −ml)(β+(1− θ0)(1−β)), b)

− λ

1−λ
((mh −ml)β− (ml − rα(ml)+ (mh − rα(mh)))(1− θ0)(1−β))

+

(
1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)

)
(1−β) (1− θ0)

+

(
w− y− 1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (vh −ml)−

λ

1−λ
(ml − rα(ml)− (mh − rα(mh)))

)+

· (1−β)

(
b− (vh −ml)(β+(1− θ0)(1−β))

)+(
cθ − (vh −ml)(1−β)

)++ .

(37)

To conclude, note that the optimal objective value of the resource allocation problem is

ΠOPT
D =max(ΠFS

D ,ΠMS
D ,ΠFSR

D ,ΠMSR
D ,ΠFA

D ,ΠMA
D ,ΠFAR

D ,ΠMAR
D ).

□

C.3. Restricted Strategy Maps with Heterogeneous ATPs

In this section, we provide a generalization of Proposition B.2 that holds for heterogeneous ATPs. Propo-

sition C.2 below shows that the structure of the strategy map from Proposition B.2 is preserved when the

distributor constrains itself to using either only skimming or non-skimming strategies from Theorem 2. Fig-

ure 7 illustrates the motivating intuition for Proposition C.2 by depicting the “constrained” strategy maps
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(a) Strategy map constrained to strategies

FS,MS,FSR and MSR.

(b) Strategy map constrained to strategies

FA,MA,FAR and MAR.

Figure 7 Strategy map for the Allocation Problem as a function of ∆m and α when the distributor is constrained

to either (a) skimming strategies or (b) strategies that target all customers. We assume vh = $10,

w = $6, θ0 = 0.2, mh = $7, ml = $6, λ = 0.4, b = $0.2, y = $3.25, β = 0.5, cθ = 0.33, and γ = 0. The

horizontal axis sets the ATPs to ml +∆m and mh +∆mh.

that form the strategy map of Figure 5. Figure 7a depicts the strategy map when the distributor constrains

itself to “skimming” strategies FS, MS, FSR and MSR, while Figure 7b depicts the strategy map when

the distributor constrains itself to strategies that target all customers FA, MA, FAR and MAR.

Generalizations of Propositions B.3 and B.4 –which describe simpler settings where a smaller number of

strategies can be optimal– follow exactly the same logic, and are thus omitted for the sake of brevity.

Proposition C.2 Under Assumption 2, assume w≤ βvh+(1−β)y and cθ ≤ (1−β)λ(w−y). Let FS, MS,

FSR, and MSR be the investment strategies from Theorem 2. Then, there exist ATPs mFS, mMSR, and

m̄MSR where w ≤ mFS ≤ mMSR, m̄MSR and functions aS1(m), aS2(m), and aS3(m) such that for a given

customer risk aversion parameter α and base ATPs ml, mh, ml ≤mh,

• ΠFS
D ≥max(ΠMS

D ,ΠFSR
D ,ΠMSR

D ) if and only if mh ≤mFS and α≥ aS3(mh)

• ΠMS
D ≥max(ΠFS

D ,ΠFSR
D ,ΠMSR

D ) if and only if mFS ≤mh ≤ m̄MSR and α≥ αS2(mh)

• ΠFSR
D ≥max(ΠFS

D ,ΠMS
D ,ΠMSR

D ) if and only if mh ≤mMSR and α≤min(aS1(mh), aS3(mh))

• ΠMSR
D ≥max(ΠFS

D ,ΠMS
D ,ΠFSR

D ) if and only if mFS ≤mh and aS1(mh)≤ α≤ aS2(mh), where aS1(mh)≤
aS2(mh) if and only if mh ≥ mFS. Also, aS1(mh) = 0 for all mMSR ≤ mh and aS1(mh) = ∞ for all

m̄MSR ≤mh.

Further, assume w ≤ βvh + (1− β)y − λ/(1− λ) ((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β)) and

cθ ≤ (1−β)(w− y)−λ/(1−λ)(1−β)(ml − rα(ml)− (mh − rα(mh))). Let FA, MA, FAR, and MAR be the

investment strategies from Theorem 2. Then, there exist ATPs mFA, mMAR, and m̄MAR where w ≤mFA ≤
mMAR, m̄MAR, and functions aA1(m), aA2(m), and aA3(m) such that for a given customer risk aversion

parameter α and base ATPs ml, mh, ml ≤mh,

• ΠFA
D ≥max(ΠMA

D ,ΠFAR
D ,ΠMAR

D ) if and only if ml ≤mFA and α≥ aA3(ml)

• ΠMA
D ≥max(ΠFA

D ,ΠFAR
D ,ΠMAR

D ) if and only if mFA ≤ml ≤ m̄MAR and α≥ αA2(ml)
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• ΠFAR
D ≥max(ΠFA

D ,ΠMA
D ,ΠMAR

D ) if and only if ml ≤mMAR and α≤min(aA1(ml), aA3(ml))

• ΠMAR
D ≥max(ΠFA

D ,ΠMA
D ,ΠFAR

D ) if and only if mFA ≤ml and aA1(ml)≤ α≤ aA2(ml), where aA1(ml)≤
aA2(ml) if and only if ml ≥ mFA. Also, aA1(ml) = 0 for all mMAR ≤ ml and aA1(ml) = ∞ for all

m̄MAR ≤ml.

The proof of Proposition C.2 follows the same logic as the proof of Proposition B.2. Namely, we establish

the following properties:

• Property 1’: ΠFS
D ≥ΠMS

D if and only if mh ≤mFS, and ΠFA
D ≥ΠMA

D if and only if ml ≤mFA;

• Property 2’: ΠMSR
D ≥ΠFSR

D if and only if α≥ aS1(mh), and ΠMAR
D ≥ΠFAR

D if and only if α≥ aA1(ml);

• Property 3’: ΠMS
D ≥ΠMSR

D if and only if α≥ aS2(mh), and ΠMA
D ≥ΠMAR

D if and only if α≥ aA2(ml);

• Property 4’: ΠFS
D ≥ΠFSR

D if and only if α≥ aS3(mh), and ΠFA
D ≥ΠFAR

D if and only if α≥ aA3(ml);

• Property 5’: aS1(mh) ≤ aS2(mh) if and only if mh ≥ mFS, aS2(mh) = ∞ for all mh ≥ m̄MSR and

aS1(mh) = 0 for all mh ≥mMSR, where w ≤mFS ≤mMSR, m̄MSR, and aA1(ml)≤ aA2(ml) if and only

if ml ≥mFA, aA2(ml) =∞ for all ml ≥ m̄MAR and aA1(ml) = 0 for all ml ≥mMAR, where w ≤mFA ≤
mMAR, m̄MAR.

Note that the first five properties combined establish the following additional properties:

• Property 6’: when m ≤ mFS then ΠMSR
D ≤ max(ΠFSR

D ,ΠMS
D ); and when m ≤ mFA then ΠMAR

D ≤
max(ΠFAR

D ,ΠMA
D );

• Property 7’: when m ≥ mFS then α ≥ aS2(mh) implies ΠFSR
D ≤ ΠMS

D ; and when m ≥ mFA then α ≥
aA2(ml) implies ΠFAR

D ≤ΠMA
D ;

• Property 8’: when m ≤mFS then α ≤ αS3(mh) implies ΠFSR
D ≥ ΠMS

D ; and when m ≤mFA then α ≤
αA3(ml) implies ΠFAR

D ≥ΠMA
D ;

• Property 9’: when m ≥mFS then α ≤ αS1(mh) implies ΠFSR
D ≥ ΠMS

D ; and when m ≥mFA then α ≤
αA1(ml) implies ΠFAR

D ≥ΠMA
D .

Properties 1’-9’ above completely characterize the restricted strategy maps given in Proposition C.2. Namely,

• ΠFS
D ≥ max(ΠMS

D ,ΠFSR
D ,ΠMSR

D ) if and only if m ≤ mFS and α ≥ aS3(mh); and ΠFA
D ≥

max(ΠMA
D ,ΠFAR

D ,ΠMAR
D ) if and only if m≤mFA and α≥ aA3(ml) (combine Properties 1’, 4’, and 6’);

• ΠMS
D ≥ max(ΠFS

D ,ΠFSR
D ,ΠMSR

D ) if and only if m ≥ mFS and α ≥ αS2(mh); and ΠMA
D ≥

max(ΠFA
D ,ΠFAR

D ,ΠMAR
D ) if and only if m≥mFA and α≥ αA2(ml) (combine Properties 1’, 3’, and 7’);

• ΠFSR
D ≥ max(ΠFS

D ,ΠMS
D ,ΠMSR

D ) if and only if α ≤ min(aS1(mh), aS3(mh)); and ΠFAR
D ≥

max(ΠFA
D ,ΠMA

D ,ΠMAR
D ) if and only if α≤min(aA1(ml), aA3(ml)) (combine Properties 2’, 4’, 8’ and 9’);

• ΠMSR
D ≥max(ΠFS

D ,ΠMS
D ,ΠFSR

D ) if and only if mFS ≤mh and aS1(mh)≤ α≤ aS2(mh), where aS1(mh)≤
aS2(mh) if and only if mh ≥mFS, aS1(mh) = 0 for all mMSR ≤mh, and aS1(mh) =∞ for all m̄MSR ≤
mh; and ΠMAR

D ≥max(ΠFA
D ,ΠMA

D ,ΠFAR
D ) if and only if mFA ≤ml and aA1(ml)≤ α ≤ aA2(ml), where

aA1(ml)≤ aA2(ml) if and only if ml ≥mFA, aA1(ml) = 0 for all mMAR ≤ml, and aA1(ml) =∞ for all

m̄MAR ≤ml (combine Properties 1’, 2’, 3’, and 5’).
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We now prove each property.

Proof of Property 1’. Recall the Linear Program in (26) for deciding between strategies MS and FS. From

Equation 27, we have that ΠFS
D ≥ΠMS

D if and only if (γvh+(1−γ)mh−w)λβ ≤ cθ. Thus, m
FS =

cθ
λβ

+w−γvh

(1−γ)
=

cθ
β

+w−γvh

(1−γ)
+ 1−λ

λ

cθ
(1−γ)β

.

Similarly, recall the optimization problem in (32). From the concavity of ΠA
D(θ) it follows that it is sufficient

to check the derivative
dΠA

D(θ)

dθ
at θ= 1, i.e.,

ΠMA
D ≥ΠFA

D ⇐⇒ dΠA
D(1)

dθ
≥ 0.

We have

dΠA
D(1)

dθ
= (γvh +(1− γ)ml −w)β− cθ +((vh −ml)β+ cθ)1{cθ(1−θ0)+(vh−ml)β≤b} −

λβ

1−λ
(mh −ml)

= (γvh +(1− γ)ml −w)β− cθ −
λβ

1−λ
(mh −ml).

where the second equality follows from Assumption 1. Thus, ΠFA
D ≥ΠMA

D if and only if (γvh + (1− γ)ml −
w)β ≤ cθ +

λβ

1−λ
(mh −ml). Thus, m

FA =
cθ
β

+w−γvh

(1−γ)
+ λ

1−λ

(
mh−mFA

1−γ

)
, completing the proof of Property 1’.

Proof of Property 2’. Recall the optimization problem in (28). From the concavity of ΠSR
D (θ) it follows

that it is sufficient to check the derivative
dΠSR

D (θ)

dθ
at θ= 1, i.e.,

ΠMSR
D ≥ΠFSR

D ⇐⇒ dΠSR
D (1)

dθ
≥ 0.

We have

dΠSR
D (1)

dθ
=−

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (1−β) (w− y)

)
λ

− cθ − ((vh −mh)λ(1−β)− cθ)1{cθ(1−θ0)+(vh−mh)λβ≤b}

=− (1− γ)
(1−β)λ

α
ln

(
1−βe−α(vh−mh)

1−β

)
+(1−β)λ(w− y)− cθ,

where the second equality follows from Assumption 1. Thus,

dΠSR
D (1)

dθ
≥ 0 ⇐⇒ 1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
≤w− y− cθ

λ(1−β)
,

First assume that γ ≤ 1, note that then the term 1−γ

α
ln
(

1−βe−α(vh−mh)

1−β

)
is monotonically decreasing in α

and has range
[
0, (1−γ)β(vh−mh)

1−β

]
. If 0≤w− y− cθ

λ(1−β)
≤ (1−γ)β(vh−mh)

1−β
, then there exists α̂S1 that satisfies

1− γ

α̂S1

ln

(
1−βe−α̂S1(vh−mh)

1−β

)
=w− y− cθ

λ(1−β)
.

Then, we define aS1(mh) as

aS1(mh) =


∞, if w− y− cθ

λ(1−β)
< 0

α̂S1, if 0≤w− y− cθ
λ(1−β)

≤ (1−γ)β(vh−m)

1−β

0, if (1−γ)β(vh−mh)

1−β
<w− y− cθ

λ(1−β)
.

Since cθ ≤ (1 − β)λ(w − y) by assumption, then aS1(mh) < ∞. The definition of aS1(mh) when γ > 1 is

analogous and is skipped for the sake of brevity.
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Similarly, recall the optimization problem in (34). From the concavity of ΠAR
D (θ) it follows that it is

sufficient to check the derivative
dΠAR

D (θ)

dθ
at θ= 1, i.e.,

ΠMAR
D ≥ΠFAR

D ⇐⇒ dΠAR
D (1)

dθ
≥ 0.

We have

dΠAR
D (1)

dθ
=−

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (1−β) (w− y)

)
− cθ − ((vh −ml)(1−β)− cθ)1{cθ(1−θ0)+(vh−ml)β≤b}

− λ

1−λ
(ml − rα(ml)− (mh − rα(mh)))(1−β)

=− (1− γ)
1−β

α
ln

(
1−βe−α(vh−ml)

1−β

)
+(1−β) (w− y)− cθ

− λ

1−λ
(ml − rα(ml)− (mh − rα(mh)))(1−β)

where the second equality follows from Assumption 1. Thus,

dΠAR
D (1)

dθ
≥ 0 ⇐⇒ 1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
≤ gA1(ml),

where gA1(ml) = w − y − cθ
1−β

− λ
1−λ

(ml − rα(ml) − (mh − rα(mh))). First assume that γ ≤ 1, note that

then the term 1−γ

α
ln
(

1−βe−α(vh−ml)

1−β

)
is monotonically decreasing in α and has range

[
0, (1−γ)β(vh−ml)

1−β

]
. If

0≤ gA1(ml)≤ (1−γ)β(vh−ml)

1−β
, then there exists α̂A1 that satisfies

1− γ

α̂A1

ln

(
1−βe−α̂A1(vh−ml)

1−β

)
= gA1(ml).

Then, we define aA1(ml) as

aA1(ml) =


∞, if gA1(ml)< 0

α̂A1, if 0≤ gA1(ml)≤ (1−γ)β(vh−ml)

1−β

0, if (1−γ)β(vh−ml)

1−β
< gA1(ml).

Since cθ ≤ (1−β)(w− y)−λ/(1−λ)(1−β)(ml − rα(ml)− (mh − rα(mh))) by assumption, then gA1(ml)≥ 0

thus aA1(ml)<∞. The definition of aA1(ml) when γ > 1 is analogous and is skipped for the sake of brevity.

This establishes Property 2’.

Proof of Property 3’. To compare strategy MS and MSR, we directly compare their distributor’s value.

From the proof of Theorem 2:

ΠMSR
D =(γvh +(1− γ)mh −w)λβ+(b− cθ(1− θ0))

+

+

(
1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (w− y)

)
(1−β)λ

(
1− θ0 −

b

cθ

)+

.

and

ΠMS
D = (γvh +(1− γ)mh −w)min

(
1, θ0 +

b

cθ

)
λβ+(b− cθ(1− θ0))

+

Thus, ΠMS
D ≥ΠMSR

D if and only if

−(γvh+(1−γ)mh−w)β

(
1− θ0 −

b

cθ

)+

≥
(
1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (w− y)

)
(1−β)

(
1− θ0 −

b

cθ

)+

.
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If
(
1− θ0 − b

cθ

)+
= 0, then the budget is sufficient to set θ = 1 and the profits of policy M and MR are

the same since all customers are informed and there are no returns. Thus we consider the case where(
1− θ0 − b

cθ

)+
> 0. In such case, the inequality above becomes

−(γvh +(1− γ)mh −w)β ≥
(
1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (w− y)

)
(1−β).

Rearranging the terms yields the relationship,

ΠMS
D ≥ΠMSR

D ⇐⇒ 1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
≤ gS2(mh).

where gS2(mh) =w− y− (γvh +(1− γ)mh −w) β

1−β
.

As in the proof of Property 2’, first assume that γ ≤ 1, note that then the term 1−γ

α
ln
(

1−βe−α(vh−mh)

1−β

)
is

monotonically decreasing in α and has range
[
0, (1−γ)β(vh−mh)

1−β

]
. If 0≤ gS2(mh)≤ (1−γ)β(vh−mh)

1−β
, then there

exists a α̂S2 that satisfies
1− γ

α̂S2

ln

(
1−βe−α̂S2(vh−mh)

1−β

)
= gS2(mh).

Then, we define aS2(mh) as

aS2(mh) =


∞, if gS2(mh)< 0

α̂S2, if 0≤ gS2(mh)≤ (1−γ)β(vh−mh)

1−β

0, if (1−γ)β(vh−mh)

1−β
< gS2(mh).

Since w ≤ βvh + (1− β)y by assumption, then gS2(mh)≤ (1− γ)β(vh −mh)/(1− β) thus aS2(mh)> 0. As

before, the definition of aS2(mh) when γ > 1 is analogous and is skipped for the sake of brevity.

Similarly, to compare strategy MA and MAR, we directly compare their distributor’s value. From the

proof of Theorem 1:

ΠMAR
D =(γvh +(1− γ)ml −w)β+(b− cθ(1− θ0))

+

− λ

1−λ

(
(mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β)

(
1− θ0 −

b

cθ

)+
)

+

(
1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)

)
(1−β)

(
1− θ0 −

b

cθ

)+

.

and

ΠMA
D = (γvh +(1− γ)ml −w)min

(
1, θ0 +

b

cθ

)
β+(b− cθ(1− θ0))

+ − λβ

1−λ
min

(
1, θ0 +

b

cθ

)
(mh −ml)

Thus, ΠMA
D ≥ΠMAR

D (α,ml) if and only if

−(γvh +(1− γ)ml −w)β

(
1− θ0 −

b

cθ

)+

≥
(
1− γ

α
ln

(
1−βe−α(vh−m)

1−β

)
− (w− y)

)
(1−β)

(
1− θ0 −

b

cθ

)+

.

− λ

1−λ
((mh −ml)− (rα(mh)− rα(ml))(1−β))

(
1− θ0 −

b

cθ

)+

If
(
1− θ0 − b

cθ

)+
= 0, then the budget is sufficient to set θ = 1 and the profits of policy MA and MAR

are the same since all customers are informed and there are no returns. Thus we consider the case where(
1− θ0 − b

cθ

)+
> 0. In such case, the inequality above becomes

λ

1−λ
((mh −ml)− (rα(mh)− rα(ml))(1−β))− (γvh +(1− γ)ml −w)β

≥
(
1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)

)
(1−β).
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Rearranging the terms yields the relationship,

ΠMA
D (α,m)≥ΠMAR

D (α,m) ⇐⇒ 1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
≤ gA2(ml).

where gA2(ml) =w− y+ λ
1−λ

(
mh−ml

1−β
− (rα(mh)− rα(ml))

)
− (γvh +(1− γ)ml −w) β

1−β
.

As before, first assume that γ ≤ 1, note that then the term 1−γ

α
ln
(

1−βe−α(vh−ml)

1−β

)
is monotonically decreas-

ing in α and has range
[
0, (1−γ)β(vh−ml)

1−β

]
. If 0≤ gA2(ml)≤ (1−γ)β(vh−ml)

1−β
, then there exists a α̂A2 that satisfies

1− γ

α̂A2

ln

(
1−βe−α̂A2(vh−ml)

1−β

)
= gA2(ml).

Then, we define aA2(ml) as

aA2(ml) =


∞, if gA2(ml)< 0

α̂A2, if 0≤ gA2(ml)≤ (1−γ)β(vh−ml)

1−β

0, if (1−γ)β(vh−ml)

1−β
< gA2(ml).

Since cθ ≤ (1− β)(w− y)− λ/(1− λ)(1− β)(ml − rα(ml)− (mh − rα(mh))) by assumption, then gA2(ml)≤
(1−γ)β(vh−ml)/(1−β) thus aA2(ml)> 0. As before, the definition of aA2(ml) when γ > 1 is analogous and

is skipped for the sake of brevity. This establishes Property 3’.

Proof of Property 4’. The proof of this property is analogous to the proof of Properties 2’ and 3’. We

denote the information level in strategy FS and FSR by θFS and θFSR, respectively. We directly compare

the distributor’s value in FS and FSR. Hence,

ΠFS
D ≥ΠFSR

D

⇐⇒ (γvh +(1− γ)mh −w)θFSλβ+ b− cθ(θ
FS − θ0)≥

(γvh +(1− γ)mh −w)λβ+min
(
(vh −mh)λ(β+(1− θFSR)(1−β)), b− cθ(θ

FSR − θ0)
)

+

(
1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (w− y)

)
(1−β)λ(1− θFSR)

⇐⇒ (γvh +(1− γ)mh −w)θFSλβ+ b− cθ(θ
FS − θ0)≥

(γvh +(1− γ)mh −w)θFSRλβ+ b− cθ(θ
FSR − θ0)−

(
b− cθ(θ

FSR − θ0)− (vh −mh)λ(β+(1− θFSR)(1−β))
)+

+

(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (1−β)(w− y)+ (γvh +(1− γ)mh −w)β

)
λ(1− θFSR)

⇐⇒ ((γvh +(1− γ)mh −w)λβ− cθ)(θ
FS − θFSR)

+
(
b− (vh −mh)λ(β+(1− θ0)(1−β))− (cθ − (vh −mh)λ(1−β))(θFSR − θ0)

)+ ≥(
(1− γ)

1−β

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (1−β)(w− y)+ (γvh +(1− γ)mh −w)β

)
λ(1− θFSR)

⇐⇒ ((γvh +(1− γ)mh −w)λβ− cθ)(θ
FS − θFSR)

+
(
b− (vh −mh)λ(β+(1− θ0)(1−β))−

(
b− (vh −mh)λ(β+(1− θ0)(1−β))

)+
1{cθ≥(vh−mh)λ(1−β)}1{y≤yS

θ }
)+ ≥(

(1− γ)
1−β

α
ln

(
1−βe−α(vh−mh)

1−β

)
− (1−β)(w− y)+ (γvh +(1− γ)mh −w)β

)
λ(1− θFSR)

⇐⇒ 1− γ

α
ln

(
1−βe−α(vh−mh)

1−β

)
≤ gS3(mh),
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where the first equivalence is by definition of ΠFS
D and ΠFSR

D , the second and third equivalences follow by

rearranging terms, the fourth equivalence follows from the definition of θFSR, and the last equivalence follows

by defining gS3(mh) as

gS3(mh) =
1

(1−β)

[
(1−β)(w− y)− (γvh +(1− γ)mh −w)β+

(
(γvh +(1− γ)mh −w)λβ− cθ

)( θFS − θFSR

λ(1− θFSR)

)
+
(
b− (vh −mh)λ(β+(1− θ0)(1−β))

)+ 1−1{y≤yd
θ
,cθ≥(vh−mh)λ(1−β)}

λ(1− θFSR)

]
,

where yS
θ =w− 1−γ

α
ln
(

1−βe−α(vh−mh)

1−β

)
− (vh−mh). Similar to the previous two properties, assume first that

γ ≤ 1, if 0≤ gS3(mh)≤ (1−γ)β(vh−mh)

1−β
, then there exists a α̂S3 that satisfies

1− γ

α̂S3

ln

(
1−βe−α̂S3(vh−m)

1−β

)
= gS3(mh).

We then define aS3(mh) as

aS3(mh) =


∞, if gS3(mh)≤ 0

α̂S3, if 0≤ gS3(m)≤ (1−γ)β(vh−mh)

1−β

0, if (1−γ)β(vh−mh)

1−β
≤ gS3(mh).

Again, the definition of aS3(mh) when γ > 1 is analogous and is skipped for the sake of brevity.

Similarly, we denote the information level in strategy FA and FAR by θFA and θFAR, respectively. We

directly compare the distributor’s value in FA and FAR. Hence,

ΠA
D(θ) = (γvh +(1− γ)ml −w)θβ+min((vh −ml)θβ, b− cθ(θ− θ0))−

λθβ

1−λ
(mh −ml)

ΠFA
D ≥ΠFAR

D (α,ml)

⇐⇒
(
γvh +(1− γ)ml −w− λ

1−λ
(mh −ml)

)
θFAβ+min((vh −ml)θ

FAβ, b− cθ(θ
FA − θ0))≥

(γvh +(1− γ)ml −w)β+min
(
(vh −ml)(β+(1−β)(1− θFAR)), b− cθ(θ

FAR − θ0)
)

− λ

1−λ
((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β)(1− θFAR))

+

(
1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)

)
(1−β)(1− θFAR)

⇐⇒
(
γvh +(1− γ)ml −w− λ

1−λ
(mh −ml)

)
θFAβ+ b− cθ(θ

FA − θ0)− (b− cθ(θ
FA − θ0)− (vh −ml)θ

FAβ)+ ≥(
γvh +(1− γ)ml −w− λ

1−λ
(mh −ml)

)
θFARβ+ b− cθ(θ

FAR − θ0)

−
(
b− cθ(θ

FAR − θ0)− (vh −ml)(β+(1− θFAR)(1−β))
)+

− λ

1−λ
((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β)) (1− θFAR)

+

(
1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)+ (γvh +(1− γ)ml −w)

β

1−β

)
(1−β)(1− θFAR)

⇐⇒
((

γvh +(1− γ)ml −w− λ

1−λ
(mh −ml)

)
β− cθ

)
(θFA − θFAR)

− (b− (vh −ml)θ0β− (cθ +(vh −ml)β)(θ
FA − θ0))

+

+
(
b− (vh −ml)(β+(1− θ0)(1−β))− (cθ − (vh −ml)(1−β))(θFAR − θ0)

)+
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+
λ

1−λ
((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β)) (1− θFAR)≥(

1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)+ (γvh +(1− γ)ml −w)

β

1−β

)
(1−β)(1− θFAR)

⇐⇒
((

γvh +(1− γ)ml −w− λ

1−λ
(mh −ml)

)
β− cθ

)
(θFA − θFAR)

−
(
b− (vh −ml)θ0β− (b− θ0β(vh −ml))

+
1{w≤wA

θ }
)+

+
(
b− (vh −ml)(β+(1− θ0)(1−β))−

(
b− (vh −ml)(β+(1− θ0)(1−β))

)+
1{cθ≥(vh−ml)(1−β)}1{y≤yb

θ}
)+

+
λ

1−λ
((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β)) (1− θFAR)≥(

1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
− (w− y)+ (γvh +(1− γ)ml −w)

β

1−β

)
(1−β)(1− θFAR)

⇐⇒ 1− γ

α
ln

(
1−βe−α(vh−ml)

1−β

)
≤ gA3(ml),

where the first equivalence is by definition of ΠFA
D and ΠFAR

D , the second and third equivalences follow

by rearranging terms, the fourth equivalence follows from the definition of θFA and θFAR, and the last

equivalence follows by defining gA3(ml) as

gA3(ml) =
1

1−β
[(w− y)(1−β)− (γvh +(1− γ)ml −w)β

+

((
γvh +(1− γ)ml −w− λ

1−λ
(mh −ml)

)
β− cθ

)(
θFA − θFAR

1− θFAR

)
− (b− θ0β(vh −ml)

+
1{w>wA

θ }
1− θFAR

+
(
b− (vh −ml)(β+(1− θ0)(1−β))

)+ 1−1{y≤yb
θ
,cθ≥(vh−ml)(1−β)}

1− θFAR

+
λ

1−λ
((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β))

]
,

where wA
θ = vh+γ(vh−ml)− λ

1−λ
(mh−ml) and yb

θ =w− (1−γ) 1
α
ln
(

1−βe−α(vh−ml)

1−β

)
− (vh−ml)− λ

1−λ
(ml−

rα(ml)− (mh − rα(mh))). Similar to the previous two properties, assume first that γ ≤ 1, if 0≤ gA3(ml)≤
(1−γ)β(vh−ml)

1−β
, then there exists a α̂A3 that satisfies

1− γ

α̂A3

ln

(
1−βe−α̂A3(vh−ml)

1−β

)
= gA3(ml).

We then define aA3(ml) as

aA3(ml) =


∞, if gA3(ml)≤ 0

α̂A3, if 0≤ gA3(ml)≤ (1−γ)β(vh−ml)

1−β

0, if (1−γ)β(vh−ml)

1−β
≤ gA3(ml).

Again, the definition of aA3(ml) when γ > 1 is analogous and is skipped for the sake of brevity. This establishes

Property 4’.

Proof of Property 5’. We show the first sentence in the first statement in Property 5’. We first show that

aS1(m
FS) = aS2(m

FS). By definition mFS satisfies (γvh +(1− γ)mFS −w)λβ = cθ. Therefore,

gS2(m
FS) =w− y− (γvh +(1− γ)mFS −w)

β

1−β
=w− y− cθ

λ(1−β)
.
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We now show that aS1(mh)≥ aS2(mh) if and only if mh ≤mFS . Since (γvh + (1− γ)mh −w)λβ ≥ cθ if

and only if mh ≥mFS, then w− y− cθ
λ(1−β)

≥ gS2(mh) if and only if mh ≥mFS, hence aS1(mh)≤ aS2(mh) if

and only if mh ≥mFS.

We now prove the second sentence in the first statement in Property 5. Let mMSR = vh − (1−β)λ(w−y)−cθ
(1−γ)λβ

.

Then, from the definition of aS1(mh) in Property 2’ we have that if mh ≥ mMSR then aS1(mh) = 0, i.e.,

strategy MSR dominates strategy FSR for all α ≥ aS1(mh) = 0. Moreover, the first sentence in the first

statement in Property 5’ then implies mMSR ≥mFS while cθ ≤ (1−β)λ(w− y) implies mMSR ≤ vh. Further-

more, Property 1’ then also implies that strategy MSR dominates strategy FS for all α≥ aS1(mh) = 0 and

mh ≥mFS.

Analogously, let m̄MSR = vh − βvh+(1−β)y−w

(1−γ)β
. Then, from the definition of aS2(mh) in Property 3’ we have

that if mh ≥ m̄MSR then aS2(mh) =∞, i.e., strategy MSR dominates strategy MS for all α≤ aS2(mh) =∞.

Moreover, the first sentence in the first statement in Property 5’ implies m̄MSR ≥mFS, while w≤ βvh+(1−
β)y implies m̄MSR ≤ vh, establishing the first statement in Property 5’.

Similarly, we now show the first sentence in the second statement in Property 5’. Namely, we first show

that aA1(m
FA) = aA2(m

FA). By definition mFA satisfies (γvh + (1− γ)mFA −w)β = cθ +
λβ

1−λ
(mh −mFA).

Therefore,

gA2(m
FA) =w− y+

λ

1−λ

(
mh −mFA

1−β
− (rα(mh)− rα(m

FA))

)
− (γvh +(1− γ)mFA −w)

β

1−β

=w− y− λ

1−λ

(
mFA − rα(m

FA)− (mh − rα(mh))
)
− cθ

1−β
= gA1(m

FA)

We now show that aA1(ml)≥ aA2(ml) if and only ifm≤mFA . Since (γvh+(1−γ)ml−w)β ≥ cθ+
λβ

1−λ
(mh−

ml) if and only if ml ≥mFA, then gA1(ml)≥ gA2(ml) if and only if ml ≥mFA, hence aA1(ml)≤ aA2(ml) if

and only if ml ≥ m̄l.

To conclude, we now prove the second sentence in the second statement in Property 5. Let mMAR =

vh− (1−β)λ(w−y)−cθ
(1−γ)λβ

+ λ
1−λ

(1−β)(mMAR− rα(m
MAR)− (mh− rα(mh))). Then, from the definition of aA1(ml)

in Property 2’ we have that if ml ≥mMAR then aA1(ml) = 0, i.e., strategy MAR dominates strategy FAR

for all α ≥ aA1(ml) = 0. Moreover, the first sentence in the first statement in Property 5’ then implies

mMAR ≥mFA while cθ ≤ (1−β)(w−y)−λ/(1−λ)(1−β)(ml−rα(ml)− (mh−rα(mh))) implies mMAR ≤ vh.

Furthermore, Property 1’ then also implies that strategy MAR dominates strategy FA for all α≥ aA1(ml) = 0

and ml ≥mFA.

Analogously, let m̄MAR = vh − βvh+(1−β)y−w

(1−γ)β
+ λ

1−λ

(mh−ml)β−(ml−rα(ml)−(mh−rα(mh)))(1−β)

(1−γ)β
. Then, from

the definition of aA2(ml) in Property 3’ we have that if ml ≥ m̄MAR then aA2(ml) = ∞, i.e.,

strategy MAR dominates strategy MA for all α ≤ aA2(ml) = ∞. Moreover, the first sentence in

the first statement in Property 5’ implies m̄MAR ≥ mFA, while w ≤ βvh + (1 − β)y − λ/(1 −
λ) ((mh −ml)β− (ml − rα(ml)− (mh − rα(mh)))(1−β)) implies m̄MAR ≤ vh, establishing Property 5’.

Hence, we have shown Properties 1’ to 5’, completing the proof of Proposition C.2. □
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C.4. Proof of Corollary 2

Proof. To prove the corollary we build on Properties 1’-9’ from the proof of Proposition C.2, and show

the following additional properties at the end of this proof.

• Property 10’: if γcθ ≤ (λ/(1−λ))2β(mh−ml) and ΠFS
D ≥ΠMS

D then ΠFS
D ≥ΠFA

D if and only if ml ≤mS;

• Property 11’: ΠMAR
D ≥ΠMSR

D if and only if α≤ aMAR(ml).

Properties 1’-11’ prove the corollary. Namely,

• If γcθ ≤ (λ/(1−λ))2β(mh −ml) then

ΠFS
D ≥max(ΠMS

D ,ΠFSR
D ,ΠMSR

D ,ΠFA
D ,ΠMA

D ,ΠFAR
D ,ΠMAR

D )

if and only if ml ≤mFAS =min(mFA,mS), mh ≤mFS and α≥ aFS(ml,mh) = max(aA3(ml), aS3(mh))

(combine Properties 1’, 4’, 5’, 6’ and 10’);

• If ml ≥ m̂MAR =max(mMAR, m̄MAR), mh ≥ m̂MSR =max(mMSR, m̄MSR) and α≤ aMAR(ml), then

ΠMAR
D ≥max(ΠMS

D ,ΠFSR
D ,ΠMSR

D ,ΠMA
D ,ΠFAR

D ,ΠFS
D ),

(combine Properties 1’, 2’, 3’, 5’, and 11’).

We now complete the proof of the corollary by proving Properties 10’ and 11’.

Proof of Property 10. Let mS be the unique value of ml that satisfies

ml =
w− γvh
1− γ

+
λ

1−λ
(mh −ml)

(
1+

1

(1−λ)(1− γ)

)
− (cθ − (γvh +(1− γ)mh −w)

(1− γ)(1−λ)β

θFS − θFA

θFA
. (38)

We analyze three exhaustive cases.

First, assume b < λθ0β(vh −mh)≤ θ0β(vh −ml) then θFS = θFS = θ0 and after some algebra we conclude

that in this case

ΠFS
D ≥ΠFA

D ⇐⇒ ml ≤
w− γvh
1− γ

+
λ

1−λ
(mh −ml)

(
1+

1

(1−λ)(1− γ)

)
≡mS,

concluding the proof of Property 10 in this case.

Second, if λθ0β(vh −mh)≤ b < θ0β(vh −ml) then θFS > θFA = θ0 and after some algebra we conclude

ΠFS
D ≥ΠFA

D ⇐⇒ (cθ − (γvh +(1− γ)mh −w)λβ)(cθθ0 + b)

≤
(
cθ −

(
γvh +(1− γ)ml −w− λ

1−λ
(mh −ml)

)
β

)
θ0(cθ +λβ(vh −mh)). (39)

We show that if γcθ ≤ (λ/(1− λ))2β(mh −ml) and ΠFS
D ≥ΠSR

D (θ) then the left hand side of (39) increases

strictly faster in mh than the right hand side in mh, ml. Indeed, after some algebra the latter statement

holds if and only if

(1− γ)λ(θ0β(vh −ml)− b)+ θ0(1−λ)

((
λ

1−λ

)2

β(mh −ml)− γcθ

)
+ θ0(cθ − (γvh +(1− γ)mh −w)> 0,

where the first term is strictly positive in this case, and the second and third term are positive by assumption

(the third term being positive is equivalent to ΠFS
D ≥ΠSR

D (θ)). Hence, (38) follows directly from (39).
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Finally, if λθ0β(vh −mh)≤ θ0β(vh −ml)≥ b then θFS ≥ θFA > θ0 then

ΠFS
D ≥ΠFA

D ⇐⇒ (cθ − (γvh +(1− γ)mh −w)λβ)(cθ +β(vh −ml))

≤
(
cθ −

(
γvh +(1− γ)ml −w− λ

1−λ
(mh −ml)

)
β

)
(cθ +λβ(vh −mh)). (40)

After some algebra, it is not hard to see that the left hand side of (40) increases strictly faster in mh, ml,

than the right hand side in mh, ml if and only if γcθ ≤ (λ/(1−λ))2β(mh −ml), which holds by assumption.

Hence, (38) follows directly from (39) completing the proof of Property 10’.

Proof of Property 11’. We now show that ΠMAR
D ≥ ΠMSR

D if and only if α ≤ aMAR(ml). From equations

(30) and (36) we conclude, after some algebra, that

ΠMAR
D ≥ΠMSR

D

⇐⇒
(
(1− γ)(ml − rα(ml))+

λ

1−λ

(
(1− γ)+

1

1−λ

)
(ml − rα(ml)− (mh − rα(mh)))

)
(1−β)

(
1− θ0 −

b

cθ

)+

≥ λβ

1−λ
(mh −ml)

(
(1− γ)+

1

1−λ

)
+(w− y)(1−β)

(
1− θ0 −

b

cθ

)+

− (γvh +(1− γ)ml −w)β (41)

To simplify the notation, let lhs(41) and rhs(41) denote the left and right hand side of (41), respectively.

As before, first assume that γ ≤ 1, note that then lhs(41) is monotonically decreasing in α and has range[
0,
(
(1− γ)β(vh −ml)+

λ
1−λ

(
(1− γ)+ 1

1−λ

)
β(mh −ml)

)(
1− θ0 − b

cθ

)+]
. If rhs(41) falls in this range then

there exists α̂MAR that satisfies (41) with equality. Then, we define aMAR(ml) as

aMAR(ml) =


∞, if lhs(41)≤ 0

α̂bd, if 0≤ lhs(41)≤
(
(1− γ)β(vh −ml)+

λ
1−λ

(
(1− γ)+ 1

1−λ

)
β(mh −ml)

)(
1− θ0 − b

cθ

)+
0, if

(
(1− γ)β(vh −ml)+

λ
1−λ

(
(1− γ)+ 1

1−λ

)
β(mh −ml)

)(
1− θ0 − b

cθ

)+
≤ lhs(41).

The definition of aMAR(ml) when γ > 1 is analogous and is skipped for the sake of brevity. This completes

the proof of Property 11’, thus the proof of the corollary. □

C.5. Consumer Surplus Analysis with Heterogeneous ATPs

We start by extending Lemma B.1 to hold for heterogeneous ATPs.

Lemma C.2 Let θi, i∈ {FA,MA,FAR,MAR,FS,MS,FSR,MSR} be the education level of each strategy

from Theorem 2. Then, under Assumption 1,

θMS = θMSR ≥ θFS ≥ θFSR, θMA = θMAR ≥ θFA ≥ θFAR. (42)

Proof. From their definition, in the proof of Theorem 2, we have θMA = θMS = θMAR = θMSR, where they

are equal to the natural upper bound on θ. Moreover, from Assumption 1 it follows that θMS = θMSR ≥ θFS

and θMA = θMAR ≥ θFA.

We now argue that θFS ≥ θFSR. If θFSR = θ0 then θFS ≥ θFSR follows trivially from their definition, in

the proof of Theorem 2. If θFSR > θ0 then by definition again we must have cθ > (vh −mh)λ(1− β) > 0,

cθ(θ
FSR − θ0) + (vh − mh)λ(θ

FSRβ + (1 − θFSR)) = b, and cθ(θ
FS − θ0) + (vh − mh)θ

FSλβ = b, hence we

conclude θFS ≥ θFSR.

We now argue that θFA ≥ θFAR. If θFAR = θ0 then θFA ≥ θFAR follows trivially from their definition, in

the proof of Theorem 2. If θFAR > θ0 then by definition again we must have cθ > (vh −ml)(1 − β) > 0,

cθ(θ
FAR− θ0)+(vh−ml)(θ

FARβ+(1− θFAR)) = b, and cθ(θ
FA− θ0)+(vh−ml)θ

FAβ = b, hence we conclude

θFA ≥ θFAR, completing the proof. □
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C.6. Proof of Proposition 5

Proof. Recall, from Proposition C.1, that

CSi = (vh −ml)θ
iβ, i∈ {FA,MA},

CSi = (vh −mh)λθ
iβ, i∈ {FS,MS},

and

CSi = (vh −ml)β− 1−β

α
ln

(
1−βe−α(vh−ml)

1−β

)(
1− θi

)
, i∈ {FAR,MAR},

CSi = (vh −mh)λβ− 1−β

α
ln

(
1−βe−α(vh−mh)

1−β

)
λ
(
1− θi

)
, i∈ {FSR,MSR}.

We prove the proposition by showing the following results,

(i) CSMSR ≥max(CSMS,CSFS,CSFSR); and CSMAR ≥max(CSMA,CSFA,CSFAR).

(ii) CSMSR ≤CSMAR;

(iii) CSFS ≤ min(CSMS,CSFSR,CSMSR) if and only if α ≥ aS4(mh); and CSFA ≤
min(CSMA,CSFAR,CSMAR) if and only if α≥ aA4(ml);

(iv) If ΠFA
D ≥ 0 then CSFS ≤CSFA.

Then, the first statement in the proposition follows from (i) and (ii). While the second statement in the

proposition follows from (iii) and (iv) by taking acs
FS(mh,ml) =max(aS4(mh), aA4(ml)).

We first prove (i). We start by showing that CSMSR ≥max(CSMS,CSFSR,CSFS). In particular, since

θMSR ≥ θFSR from Lemma C.2 then CSMSR ≥CSFSR. Moreover,

CSMSR ≥ (vh −mh)λθ
MSRβ = (vh −mh)λθ

MSβ =CSMS ≥ (vh −mh)λθ
FSβ =CSFS,

where the first inequality follows since 1−β

α
ln
(

1−βe−α(vh−mh)

1−β

)
is decreasing in α > 0 and taking the limit

α → 0. The second inequality follows since, from Lemma C.2, θMS = θMSR ≥ θFS. Hence, we conclude

CSMSR ≥max(CSFS,CSMS,CSFSR).

Similarly, we now show that CSMAR ≥max(CSMA,CSFAR,CSFA). In particular, since θMAR ≥ θFAR from

Lemma C.2 then CSMAR ≥CSFAR. Moreover,

CSMAR ≥ (vh −ml)θ
MARβ = (vh −ml)θ

MAβ =CSMA ≥ (vh −ml)θ
FAβ =CSFA,

where the first inequality follows since 1−β

α
ln
(

1−βe−α(vh−ml)

1−β

)
is decreasing in α > 0 and taking the limit

α → 0. The second inequality follows since, from Lemma C.2, θMA = θMAR ≥ θFA. Hence, we conclude

CSMAR ≥max(CSFA,CSMA,CSFAR), completing the proof of (i).

We now show (ii), i.e., CSMSR ≤CSMAR. Indeed, note that

β(mh −ml)+
1−β

α

(
ln

(
1−βe−α(vh−mh)

1−β

)
− ln

(
1−βe−α(vh−ml)

1−β

))(
1− θMSR

)
≥ θMSRβ(mh −ml)≥ 0,

(43)

where the first inequality follows from noticing that the right hand side is monotonically increasing in α and

taking the limit as α→ 0. Thus, we conclude that the first term in (43) is non-negative, which is equivalent

to the second inequality in the following chain of inequalities

λ≤ 1≤
(vh −ml)β− 1−β

α
ln
(

1−βe−α(vh−ml)

1−β

)
(1− θMAR)

(vh −mh)β− 1−β

α
ln
(

1−βe−α(vh−mh)

1−β

)
(1− θMSR)

, (44)
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which completes the proof by noticing that (44) is equivalent to CSMSR ≤CSMAR.

We now prove (iii). We start by showing that there exists aS4(mh) such that

min (CSMS,CSFSR,CSMSR)≥CSFS if and only if α≥ aS4(mh). We have already shown CSMSR ≥CSMS ≥
CSFS. We now show that CSFSR ≥CSFS if and only if α≥ aS4(mh). In fact, we have

CSFSR ≥CSFS ⇐⇒ 1−β

α
ln

(
1−βe−α(vh−mh)

1−β

)
≤ β(vh −mh)

(1− θFS)

(1− θFSR)
,

where the term 1−β

α
ln
(

1−βe−α(vh−mh)

1−β

)
is monotonically decreasing in α and has range [0, β(vh −mh)]. Since

from Lemma C.2 we have θFS ≥ θFSR, then 0≤ β(vh −mh)
(1−θFS)

(1−θFSR)
≤ β(vh −mh). Moreover, since θFS is

independent of α and θFSR is non-decreasing in α it follows that there exists aS4(mh) such that

1−β

α
ln

(
1−βe−α(vh−mh)

1−β

)
≤ β(vh −mh)

(1− θFS)

(1− θFSR)
⇐⇒ α≥ aS4(mh).

Hence, we conclude min (CSMS,CSFSR,CSMSR)≥CSFS if and only if α≥ aS4(mh).

Similarly, we now show that there exists aA4(ml) such that min (CSMA,CSFAR,CSMAR)≥CSFA if and

only if α≥ aA4(ml). We have already shown CSMAR ≥CSMA ≥CSFA. We now show that CSFAR ≥CSFA

if and only if α≥ aA4(ml). In fact, we have

CSFAR ≥CSFA ⇐⇒ 1−β

α
ln

(
1−βe−α(vh−ml)

1−β

)
≤ β(vh −ml)

(1− θFA)

(1− θFAR)
,

where the term 1−β

α
ln
(

1−βe−α(vh−ml)

1−β

)
is monotonically decreasing in α and has range [0, β(vh −ml)]. Hence,

if θFA ≤ θFAR we conclude CSFAR ≥CSFA and thus we set aS4(mh) = 0. Alternatively, if θFA > θFAR then

0≤ β(vh −ml)
(1−θFA)

(1−θFAR)
≤ β(vh −ml). Moreover, since θFA is independent of α and θFAR is non-decreasing

in α it follows that there exists aA4(ml) such that

1−β

α
ln

(
1−βe−α(vh−ml)

1−β

)
≤ β(vh −ml)

(1− θFA)

(1− θFAR)
⇐⇒ α≥ aA4(ml).

Hence, we conclude min (CSMS,CSFSR,CSMSR)≥CSFS if and only if α≥ aA4(mh), completing the proof

of (iii).

Finally, we conclude by proving (iv), i.e., that ΠFA
D ≥ 0 implies CSFS ≤CSFA. Note that ΠFA

D ≥ 0 implies

λ≤ (vh −ml)(cθ +λβ(vh −mh))

(vh −mh)(cθ +β(vh −ml))
≤ (vh −ml)θ

FA

(vh −mh)θFS
, (45)

where the first inequality is equivalent to λ ≤ (vh −ml)/(vh −mh), which holds for any λ satisfying the

assumption λ ≤ml/mh. We now verify the second inequality holds in three exhaustive cases. First, if b ≤
λθ0β(vh −mh) ≤ θ0β(vh −ml) then θFS = θFA = θ0 and the second inequality holds since (cθ + λβ(vh −
mh))/(cθ +β(vh−ml))≤ 1 = θFA/θFS. Second, if λθ0β(vh−mh)≤ b≤ θ0β(vh−ml) then θFS > θFA = θ0 and

the second inequality holds since (cθ + λβ(vh −mh))/(cθ + β(vh −ml))≤ θ0(cθ + λβ(vh −mh))/(cθθ0 + b) =

θFA/θFS, where the latter inequality follows from b≤ θ0β(vh−ml). Third, if λθ0β(vh−mh)≤ θ0β(vh−ml)≤ b

then ΠFA
D ≥ 0 implies θFS ≥ θFA > θ0 and the second inequality becomes tight. To conclude, note that the

extremes of the chain of inequalities (45) are equivalent to CSFS ≤CSFA, completing the proof. □
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C.7. Free Refunds Analysis with Heterogeneous ATP

The problem formulation is the same, see Problem (19), and the analysis is analogous to the case with

homogeneous ATP in Section B.10. Namely, we first adapt Proposition C.1 to characterize the distributor’s

pricing strategy in this restricted setup, in the next proposition.

Proposition C.3 Consider any consumer education level θ ∈ [0,1), ATPs ml, mh, w≤ml <mh ≤ vh, and

subsidy x∈ [0, vh −mh]. Then, the distributor’s optimal objective is

Π∗
D(x, θ) =max

{
ΠARf

D (x, θ),ΠSRf
D (x, θ)

}
. (46)

Where Πi
D(x, θ) i ∈ {ARf,SRf} each correspond to the distributor’s profits in a non-dominated strategy.

Specifically, they are characterized by:

(ARf) Target all informed and uninformed customers with product returns. The customer price is pARf =ml+

x and the refund is rARf =ml. Let z̄
ARf =ml− Ô

ARf
R

(1−β)θβ
. Then, without loss of generality, the equilibrium

retailer refund is zARf =max(0, z̄) and the retailer price is cARf =ml + x− Ô
ARf
R

θβ
+ (1−θ)(1−β)

θβ+(1−θ)
(zARf −

z̄ARf ). The consumer surplus is CSARf = (vh −ml)β, the retailer’s profit is ΠARf
R = ÔARf

R , and the

distributor’s profit is

ΠARf
D (x, θ) = (ml +x−w)β+(x−w+ y)(1−β)(1− θ)− ÔARf

R + γCSARf ,

where

ÔARf
R =

λβ(mh −ml)

1−λ
.

Moreover, this strategy can be sustained in equilibrium if and only if

ÔARf
R ≤mlβ+x(β+(1− θ)(1−β)).

(SRf) Target both informed and uninformed customers with product returns. The customer price is pSRf =

mh + x and the refund is rSRf =mh. The equilibrium retailer price is cSRf =mh + x, and the retailer

refund is zSRf = mh. The consumer surplus is CSSRf = (vh −mh)λβ, the retailer attains no profit,

ΠSRf
R = 0, and the distributor’s profit is

ΠSRf
D (x, θ) = (mh +x−w)λβ+(x−w+ y)λ(1−β)(1− θ)+ γCSSRf .

Moreover, this strategy can always be sustained in equilibrium.

Proposition C.3 is a special case of Proposition C.1 when α→∞. Therefore, we omit the proof.

C.8. Proof of Proposition 6

Proof. The proof of the first part of the proposition is the same as the proof of Theorem 2 for the special

case when α→∞. Therefore, we only focus on the expressions that change. Specifically,

ΠMSRf
D = (γvh +(1− γ)mh −w)λβ+(b− cθ(1− θ0))

+ − (1−β)(w− y)λ

(
1− θ0 −

b

cθ

)+

. (47)
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To simplify the notation, recall the function 1
x++ :=

{
0 if x≤ 0
1
x

if x> 0.
Then,

θFSRf = θ0 +

(
b− (vh −mh)λ(β+(1− θ0)(1−β))

)+(
cθ − (vh −mh)λ(1−β)

)++ 1{vh−mh≤w−y},

and

ΠFSRf
D = (γvh +(1− γ)mh −w)λβ+min((vh −mh)λ(β+(1− θ0)(1−β)), b)

− (w− y) (1−β)λ (1− θ0)+ (w− y− (vh −mh))
+
(1−β)λ

(
b− (vh −mh)λ(β+(1− θ0)(1−β))

)+(
cθ − (vh −mh)λ(1−β)

)++ .

(48)

Similarly,

ΠMARf
D = (γvh +(1− γ)ml −w)β+(b− cθ(1− θ0))

+ − (1−β)(w− y)

(
1− θ0 −

b

cθ

)+

− λβ(mh −ml)

1−λ
,

(49)

θFARf = θ0 +

(
b− (vh −ml)(β+(1− θ0)(1−β))

)+(
cθ − (vh −ml)(1−β)

)++ 1{vh−ml≤w−y},

and

ΠFARf
D = (γvh +(1− γ)ml −w)β+min((vh −ml)(β+(1− θ0)(1−β)), b)− λβ(mh −ml)

1−λ

− (w− y) (1−β) (1− θ0)+ (w− y− (vh −ml))
+
(1−β)

(
b− (vh −ml)(β+(1− θ0)(1−β))

)+(
cθ − (vh −ml)(1−β)

)++ .

(50)

The proof of the second part in the Proposition follows directly from Propositions B.5 and C.3 □

Appendix D: Figure from Section 6
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(a) α= 0.01
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(b) α= 1.0
Figure 8 Distributor’s profits for different average ATP µm and consumer education level θ. We assume w= $1.0,

y= $0.7, µ= $0.95, σ= $1.0, σm = $0.5, κ=−0.5, ρl = 0.1, ρh = 0.9, x= 0, and γ = 0.


